首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以早春类短命植物齿瓣延胡索为对象,采用全收获法研究其生物量及分配特征,构建株高与生物量的线性回归模型.结果表明:齿瓣延胡索的高生长在进入花果并存期后基本停止,地上与地下生物量随生长发育不断增加,在花果并存期达到最高,但在果期下降;生物量分配在营养生长期至花期由地下向地上转移,进入花果并存期和果期又转为地下积累.茎叶生物量比例在营养生长期和花期增大,在花果并存期和果期趋于稳定.花果生物量比例逐渐增大,表明了齿瓣延胡索在发育过程中营养生长向生殖生长转移的生活对策.以株高为自变量构建的总生物量、地上生物量和地下生物量4种线性回归方程均具有较高的R2值,拟合结果显示总生物量和地上生物量优于地下生物量,其中总生物量的直线、指数和幂函数拟合方程和地上生物量的指数方程均达到建模标准,可为齿瓣延胡索资源储量的估算及开发利用等提供重要的理论依据.  相似文献   

2.
以早春类短命植物顶冰花为研究对象,采用全收获法对其生物量进行统计.结果表明:顶冰花的单株生物量平均为0.316 2 g,地下部分较地上部分平均高出37.92%.随着叶长的增大,叶生物量、果生物量、总生物量、地上生物量与地下生物量均显著增加,而花生物量显著减小.有性生殖生长与植株个体大小的关系密切,占总生物量的5.47%~19.42%,平均为11.92%;占营养器官的比例平均为14.41%,表现出随叶长的增大呈先增加后下降再增加的变化趋势.根冠比介于0.93~1.86,平均为1.33,随叶长的增大呈单峰型变化.整体来看,顶冰花的生物量有随生长发育由地上生长转为地下生长,再由地下生长转为地上为主的变化和从营养生长逐渐转向有性生殖的趋势.以叶长为自变量拟合顶冰花地上、地下和全株的4种生物量估测模型,除地下生物量的指数模型外,拟合和验证结果均达到相关建模的精度要求.  相似文献   

3.
 平茬萌蘖是中国沙棘种群更新的有效方式,但其中的生态学机制并不清楚,为此,以样地每木检尺资料为基础,以 "空间差异代替时间变化法"及"样地编年序列法"原理为依据、以生物量投资与分配为指标,探讨了中国沙棘平茬更新的生态学机制.结果表明:① 中国沙棘平茬萌蘖种群及其构件生物量积累过程均符合Logistic方程,可分为慢、快、慢3个阶段,但构件之间的生物量投资与分配具有明显差异;② 通过构件之间的生物量投资与分配调节,中国沙棘实现了平茬后的萌蘖更新,尤其是萌蘖根的生物量投资具有"前置效应"和"主导效应";③ 地上与地下构件的生物量分配具有互补效应,即地下分配比例大时则地上分配比例小.因此,种群实施萌蘖更新过程中,必须在繁殖与生长之间做出权衡.  相似文献   

4.
通过采样调查法和烘干称重法,对分布在青藏高原东缘不同海拔高度下的小花风毛菊的花期繁殖分配进行研究,结果表明:1)花期植株地上生物量、株高、管状小花数目、繁殖器官及营养器官生物量均随海拔升高呈线性递减趋势,管状小花生物量随海拔升高呈线性递增趋势;2)花期繁殖分配随海拔升高呈线性递增趋势;3)花期繁殖分配随个体大小(地上生物量和株高)的增大呈线性递减趋势;4)花期管状小花生物量与管状小花数目之间存在权衡现象.  相似文献   

5.
硬头黄竹地上生物量分配特征及模型构建   总被引:1,自引:0,他引:1  
【目的】探究硬头黄竹不同龄级、径级地上生物量分配特征,建立全竹龄和不同竹龄地上单株及各器官生物量模型,准确估算硬头黄竹的林分生物量。【方法】选取了硬头黄竹全径级(1.0~7.0 cm)分布的1、2、3年生硬头黄竹各50株,测定各器官和总生物量。采用11种常用生物量模型,分别对硬头黄竹全竹龄和不同竹龄地上单株和各器官生物量进行拟合,筛选最优生物量拟合方程,并应用模型估算不同龄级、径级林分总生物量。【结果】硬头黄竹地上竹秆、竹枝、竹叶生物量占比分别为84.82%、10.84%、4.34%;不同龄级单位面积林分总生物量差异显著,竹龄为1、2、3 a竹生物量占比分别为31.92%、47.15%、20.93%;4.6~5.5 cm径级各器官和总生物量显著高于其他径级,占林分生物量的62.60%。11种生物量模型均可以较好地模拟硬头黄竹地上单株及各器官生物量;优选出全竹龄硬头黄竹地上单株和各器官生物量模型6个,不同竹龄的硬头黄竹地上单株和各器官生物量模型19个(1 a的6个、2 a的7个、3 a的6个)。【结论】硬头黄竹不同龄级、径级各器官生物量占比均为竹秆>竹枝>竹叶,林分生物量主要集中在2龄级、4.6~5.5 cm径级的竹株。全竹龄和不同竹龄地上单株与各器官生物量拟合模型中幂函数的拟合效果最优,其次是多项式函数和指数函数;地上单株与竹秆生物量模型拟合效果受胸径、株高的影响较大,竹枝、竹叶生物量模型拟合效果与胸径关系更密切。全竹龄硬头黄竹地上单株和竹秆生物量模型拟合效果均优于不同竹龄的模型,不同竹龄硬头黄竹地上竹枝、竹叶生物量模型拟合效果均优于全竹龄模型的。  相似文献   

6.
以福建省天然常绿阔叶林及人工杉木林下草本层为研究对象,对其地上生物量(y)与地下生物量(x)分配关系进行研究,并对方程lg y=b+ a lg x中的生长指数(a)和生长常数(b)进行计算分析,初步揭示不同森林类型草本层植物生物量分配及其随乔木层林龄变化的基本特征,探究其是否符合等速生长规律。结果显示:①天然常绿阔叶林草本层生物量随林龄增加而下降,人工杉木林草本层生物量在成熟林时期最大,幼、中龄林次之,近熟林最小; ②天然常绿阔叶林幼龄林及成熟林草本层地上-地下生物量分配遵循等速生长规律,中龄林及近熟林生长指数a的95%置信区间上限接近理论值1,各林龄生长常数以成熟林<幼龄林<中龄林<近熟林; ③人工杉木林草本层地上-地下生物量分配均遵循等速生长规律,各林龄生长常数以幼龄林>成熟林>近熟林>中龄林。研究表明,人为干扰对草本层地上-地下生物量分配有影响,但并未破坏其等速分配生长的规律。  相似文献   

7.
研究增加科尔沁沙地土壤粗化度对金色狗尾草(Setaria glauca(L.)Beauv.)生长的影响.结果表明:随着土壤粗化程度的提高,金色狗尾草的株高、根长、地上和地下生物量等生长指标均降低,但根冠比却显著提高;不同粗化程度土壤下金色狗尾草的地上、地下生物量有着相同的非线性定量关系,其地上-地下关系符合幂函数异速生长模型.  相似文献   

8.
以鄱阳湖南矶山湿地灰化苔草为对象,研究了其生物量、株高、鞘高等生长指标,分析了其季节生长动态.研究结果表明:灰化苔草各指标的季节生长动态基本一致,皆呈单峰型曲线;灰化苔草的地下生物量 > 地上总生物量,各构件生物量关系为根 > 茎 > 叶;灰化苔草种群的地上生物量与株高、鞘高呈线性函数关系,利用鞘高和株高可较好地预测灰化苔草种群地上生物量.  相似文献   

9.
通过野外样地实验研究了放牧方式对松嫩草地植物群落地下、地上生物量及生物量向地下分配比例的影响.实验共设置了4种放牧方式:禁牧、牛单牧、羊单牧、混合放牧.结果表明:不同放牧方式对植物地下、地上生物量的影响随降水量的不同而产生年际差异.2012年降水充足,混合放牧方式下植物地下生物量最高,并显著高于禁牧、牛单牧和羊单牧,分别高出38%,118% 和40%(P<0.01);而在2013年,由于干旱胁迫,不同放牧方式对植物地下、地上生物量的影响均不显著.生物量向地下分配的比例主要受放牧方式的影响,受降水影响较小.在两年的实验中,混合放牧方式下植物向地下分配的生物量比例均为最高,达到了57%,说明混合放牧有利于植物地下部分生物量的积累;而牛单牧和羊单牧方式下植物向地下的生物量分配比例均低于50%.从植物地下生物量及其分配比例两方面考虑,在我国北方半干旱草原应该减少牲畜单独放牧,转而推行混合放牧较为合理.  相似文献   

10.
基于荷青花在药用、观赏以及森林生态系统养分循环等方面存在的价值,利用全株收获法采样,经分选、烘干、称重和数据统计后,获得了荷青花生物量及分配特征,并以其易测生长指标为自变量构建了总生物量的一元和多元线性回归方程.结果表明:荷青花群丛在营养生长停止期,各生长指标及生物量分配在个体间有较大差异,但平均丛高和根冠比变化较小;地下部分所支持的丛幅冠、丛株数和花果数等存在一定的供给限制,且这种限制与地下生物量间存在着显著或极显著的正相关关系.虽然荷青花生物量随各生长指标的变化存在不同程度的差异,但根冠比的变化差异均不显著,这在一定程度上印证了荷青花存在权衡有限光合资源分配的能力.荷青花生物量模型以多元线性回归的拟合结果较好,但考虑自变量过多带来的系统误差,生物量预估模型可选用以丛株数和花果数为自变量的拟合方程.  相似文献   

11.
沿气温梯度中国森林生物量分布特征   总被引:1,自引:0,他引:1  
基于长期定位监测的森林生物量数据以及气象数据,利用生物量加权计算法和空间关联法,研究气温梯度下中国森林生物量分布特征.结果表明:1)森林总生物量和地下生物量随着温度梯度变化趋势一致,表现为随着气温的增加而持续升高,当气温达到一定值,森林总生物量出现先上升后下降,继而又逐渐上升最后下降趋势.地上生物量随着温度梯度变化有微小差别,随着气温的增加而直接下降,继而又逐渐上升,最后呈下降趋势,在低温前期没有上升的趋势. 2)植物地上生长与地下生长对温度有不同的响应机制,具有滞后效应. 3)对森林生物量总贡献,地上生物量比地下生物量贡献大,茎生物量比枝叶生物量贡献大.以上结果表明了我国森林生物量随着气温的变化有明显规律可循,气温对生 产力具有极其重要的影响作用.   相似文献   

12.
调查不同发育阶段白桦林群落早春植物,采用全收获法获取早春植物生物量,了解物种组成特征及生物量分配格局,分析影响群落内早春植物生物量的因素.结果表明:白桦林群落共记录到早春植物5科13属21种.其中,罂粟科和毛茛科为优势科,包含3属8种和4属7种,属、种比例均在30%左右;报春花科为单属单种科.属的组成以紫堇属和银莲花属为主,共包含10种;白屈菜属等11个属为单种属,共占调查地早春植物种类组成的52%.桃山林场白桦中龄林早春植物总生物量为0.079 2 t/hm~2,地上生物量为0.042 9 t/hm~2,地下生物量为0.0363 t/hm~2,均高于幼龄林,分别为幼龄林的2.91,3.01和2.80倍;胜利林场白桦中龄林中早春植物平均生物量为0.456 8 t/hm~2,根冠比为1.25.当林分郁闭度在0.65~0.70时,白桦林早春植物生物量最大.随着土壤A层厚度的增加,林分内早春植物生物量明显增加.  相似文献   

13.
海南岛东北部木麻黄立木生物量建模   总被引:1,自引:0,他引:1  
【目的】木麻黄是海南岛沿海主要的造林防护树种,量化估测木麻黄林生物量有利于明确木麻黄的碳汇贡献能力。【方法】以海南岛东林场木麻黄林为研究对象,选取了44株标准木,并获得其生物量实测数据。基于筛选的41株木麻黄样木生物量数据,分别选出地上和地下生物量最优独立模型,依据非线性度量误差模型的理论和求解方法,以及地上、地下生物量与材积变量之间的转换关系,建立了木麻黄地上生物量和地下生物量相容性模型,并采用加权回归消除各模型的异方差。【结果】地上、地下生物量最优独立模型为以胸径D为自变量的一元方程,立木材积的最优独立模型为以胸径D和树高H为自变量的二元独立模型; 非线性度量误差联立方程组能够很好地解决生物量相容性的问题,地上、地下生物量和立木材积的决定系数R2均大于0.95,并很好地改进了单株预测精度(平均百分标准误差EMPSE均小于10%)和控制了平均预估误差; 同时,得出生物量转换因子(EBCEF)和根茎比(R)的二元方程。【结论】此次建立的木麻黄生物量非线性联立方程组可用于大范围尺度估算木麻黄防护林的生物量及其碳储能力。  相似文献   

14.
美汉草(Meehania fargesii Levl)生物量分配分析   总被引:2,自引:0,他引:2  
调查阔叶红松林林下早春开花植物美汉草(Meehania fargesii Levl)各个器官生物量分配变化情况.结果表明:在整个生长季节中,美汉草各器官生物量总体上呈现先增加后减少的趋势,5月初~7月初,根生长速率先快后慢,茎叶生长速率先慢后快,7月中旬以后各器官生物量逐渐减少;美汉草有性生殖的生殖分配占总生物量的比例较小(4%~6%);根冠比在5~6月不断上升,6~7月迅速下降,7月以后保持稳定;根和茎叶生物量分别与总生物量呈显著的线性正相关关系.分析显示:为了适应阔叶红松林林下的光照变化,在林分郁闭前,能量主要分配给地下部分;林分郁闭后,茎叶生长占主导.美汉草主要以营养繁殖为主,第2年的地下根状茎来自第1年地上茎的繁殖方式及生物量分配策略,可能是美汉草成为林下优势草本的重要原因.  相似文献   

15.
【目的】以小型地被类观赏竹种翠竹(Pleioblastus pygmaeus)为主要研究对象,进行翠竹1.5年生实生苗生长发育规律和构件生物量模型拟合的研究,为小型竹苗快速繁育和竹资源集中经营提供理论依据。【方法】翠竹播种后约1.5 a内的生长过程中,对其母株株高、地径,分蘖苗出苗时间及其株高、地径及竹鞭出现和发育等情况进行跟踪调查。采用Logistic 模型和多项式函数对翠竹1.5年生实生苗多个形态学指标(包括叶片干质量、茎秆干质量、分蘖苗株高、竹鞭长度等)进行数学模型拟合,剖析其重要构件生物量随时间的关系,株高、地径与生物量之间的关系以及生物量积累比例之间的关系等。【结果】翠竹在播种后约1周出土,第11天第1片叶全展开,约3个月出现第1代分蘖苗,约6个月一级竹鞭开始分化,1年后一级竹鞭系统上竹秆高生长旺盛,1.5 a后二级、三级竹鞭开始分化生长。随着分蘖苗的分化,其地径和株高也逐渐增加。翠竹实生苗多个构件生物量随时间的关系表现为增长趋势。翠竹实生苗的地径相同时,随苗高生长变大,其茎秆干质量增加。播种后3个月内,翠竹实生苗地上部分干质量大于地下部分干质量,地上、地下干质量比值呈现上升趋势;播种后3~7个月,翠竹实生苗地上部分干质量小于地下部分干质量,比值呈现上升趋势;播种10~12个月,翠竹实生苗地上部分干质量大于地下部分干质量,比值呈现先上升后下降趋势;播种1年后,翠竹实生苗地上部分干质量大于地下部分干质量,比值仍呈下降趋势,但逐渐趋于稳定。【结论】本研究揭示了翠竹从播种至高生长期间的生长发育规律及其重要构件的生长发育动态过程。翠竹实生苗高生长过程中重要构件生物量与时间的关系服从Logistic模型。翠竹实生苗的地径相同时,其高度与生物量之间呈显著线性关系。翠竹实生苗在大部分生长发育过程中,其地上部分干质量大于地下部分干质量。  相似文献   

16.
利用样方法,2011年9~10月调查了安徽境内21个草地样地的地上和地下生物量。结果表明:地上生物量(含凋落物)变化幅度为75.73~3 729.07 g·m-2,平均值为987.48 g·m-2;地下生物量变化范围是129.88~8 134.18 g·m-2,平均值为2 115.50 g·m-2,不同土层中地下生物量所占的比例随土壤深度增加而减小;总生物量在205.62~10 711.05 g·m-2之间,平均值为3 102.99 g·m-2;地上、地下和总生物量从北向南皆呈增大趋势,表现出明显的空间分布格局,且皖南地区的地上与地下生物量显著高于其他地区(P0.05)。  相似文献   

17.
神农箭竹(Fargesia murielae (Gamble) Yi)原产于我国神农架地区,1996-2000年,神农箭竹相继开花死亡,现有更新苗由种子繁殖而成,现正处于南实生苗向克隆种群过渡阶段,研究这一过程中生物量在不同龄级克隆体之间的分配,对于提示从生竹类的觅养过程中的生态关系十分重要.研究结果显示神农箭竹更新苗地上部生物量在各龄级中的分配符合指数函数回归方程Y=5.7319 e0.2054x(R2 =0.9833),且各无性系构件因子之间均存在显著相关关系,其中各器官生物量与胸径的拟合模型均达到显著水平;地上部分干重与胸径的最优拟合模型为一元幂函数模型,方程式为W=2.029×D1.674;秆重与胸径的最优拟合模型为指数模型,方程式为W=0.133×e1.202D.  相似文献   

18.
生物量估算参数以比值的形式描述林分蓄积量、树干生物量、地上生物量和地下生物量间的相对生长关系.为降低区域森林生物量估算及其变化的不准确性,以华北落叶松(Larix principis-rupprechtii Mayr.)人工林为例,利用89块样地的实测数据,分析了关帝山林区、五台山中山区、五台山盆地区和塞罕坝林区等4个典型区域地上生物量(MA)与蓄积量(V)、地上生物量(MA)与树干生物量(MS)以及地下生物量(MR)与地上生物量(MA)间的回归方程及其区域差异.结果表明,区域MA与V方程间和MA与MS方程间存在显著差异(p<0.05),建议按区域构建MA与V以及MA与MS的方程;不同区域的MR与MA方程间无显著差异(p>0.05);整个区域的方程也有良好的回归效果(R2>0.90).此外,利用V、MS、MA和MR间的函数关系将提高生物量估算的准确性,整体优于利用生物量估算参数和林分指标的函数关系.  相似文献   

19.
高寒嵩草草甸不同土地管理措施对植被生产力的影响   总被引:1,自引:1,他引:0  
将原生高寒嵩草草甸封育系统作为对照,研究了土地退化对植被生产力的影响,检验了退化土地在不同人工重建措施下对植被生产力的相对影响程度.研究结果表明:原生植被封育处理总地上生物量为265.1 g/m2,0~30cm土层地下根系生物量达6982 g/m2;而重度退化处理总地上生物量仅为139.9 g/m2,0~30 cm土层地下根系生物量为916 g/m2,仅占原生植被封育处理地下根系生物量的13%,因此重度退化地主要特征之一是天然嵩草草甸坚实而富有弹性的草皮层的丧失.土地退化使地下根系生物量的损失量大约为地上损失量的50倍.混播、松耙单播和翻耕单播人工种植处理经过7个生长季后,总地上生物量分别为原生封育处理的116%,75%,68%;自然恢复处理总地上生物量为原生植被封育处理的76%.与重度退化草地相比较,种植可以有效恢复地上生物量,尤其是禾草生物量,这对于提供冬季饲草、减少天然草地的压力是至关重要的.混播、松耙单播、翻耕单播和自然恢复处理,经过7个生长季后,地下根系生物量分别为1 323,1 094,1 169,1412 g/m2,重建措施(如混播)自然恢复处理可部分恢复地下根系生物量;恢复重建处理与原生植被封育处理相比较而言,有更多的生物量是分配在地上的.但随恢复年限的增加,恢复重建草地都是将更多的生物量分配给地下.且随恢复时间的增加,人工种植处理向地下转移生物量的速率比自然封育处理的更快.  相似文献   

20.
嵩山国家森林公园不同年龄侧柏人工林生物量初步研究   总被引:1,自引:0,他引:1  
王婷  袁志良  叶永忠  张军 《河南科学》2009,27(7):817-820
采用样地法对嵩山地区侧柏10,17,21,31,44,65龄人工林的生物量和生产力进行了调查.结果表明:在不同林龄的侧柏人工林中,其单株侧柏各器官生物量的分配规律均为树干>树枝>树叶;不同恢复时期侧柏人工林乔木层的各部分器官生物量以及地上部分总生物量随林龄的增长都呈增加的趋势,但不同时期的生产力不同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号