首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
特殊液相沉淀法制备镁的钛酸盐   总被引:2,自引:1,他引:1  
采用特殊液相沉淀法制备了镁的钛酸盐。经TEM和XRD表征,镁的钛酸盐前驱体,粒径为3-4nm,经焙烧至1200℃时,有MgTiO3,MgTi2O5,Mg2TiO4出现,此时这混品的粒径为500nm左右,MgTiO3为主晶相;对不同温度段粒子的相结构进行XRD表征,探讨了生成MgTiO2和Mg2TiO4的条件和历程。  相似文献   

2.
采用特殊液相沉淀法制备了镁的钛酸盐.经TEM和XRD表征,镁的钛酸盐前驱体,粒径为3-4nm,经焙烧至1 200℃时,有MgTiO3,MgTi2O5,Mg2TiO4出现,此时这混品的粒径为500 nm左右,MgTiO3为主晶相;对不同温度段粒子的相结构进行XRD表征,探讨了生成MgTiO3和Mg2TiO4的条件和历程.  相似文献   

3.
采用特殊液相沉淀法制备了镁的钛酸盐.经TEM和XRD表征,镁的钛酸盐前驱体,粒径为3-4nm,经焙烧至1 200℃时,有MgTiO3,MgTi2O5,Mg2TiO4出现,此时这混品的粒径为500 nm左右,MgTiO3为主晶相;对不同温度段粒子的相结构进行XRD表征,探讨了生成MgTiO3和Mg2TiO4的条件和历程.  相似文献   

4.
以H2SO4,HCl和一水合柠檬酸作酸催化剂,采用溶胶-凝胶法合成了纳米TiO2光催化剂。通过XRD,TEM,HR-TEM,Uv-Vis和FT-IR等分析手段对样品进行表征。以亚甲基蓝(MB)为目标降解物,对催化剂的光催化性能进行评价。研究结果表明,酸对TiO2的结构和性能有很大的影响:以H2SO4做催化剂时,TiO2颗粒分布均匀,粒径在7~12nm之间,全为锐钛矿相;以HCl作催化剂时,TiO2的粒径约为20nm,全为锐钛矿相;而以一水合柠檬酸作催化剂时,TiO2的粒径较大,约为30nm,且团聚严重,为锐钛矿相和金红石相的混合相。以H2SO4作催化剂制备的TiO2光催化活性最好。  相似文献   

5.
以ZnCl2、TiCl4为原料,以氨水为沉淀剂,采用特殊液相沉淀法制备锌的钛酸盐.经过透射电镜(TEM)和X射线衍射(XRD)表征,ZnTiO3粉体的粒径为2-3 nm,分散性好,粒径分布均匀,粒子呈球形或近球形属六方菱形微晶.  相似文献   

6.
离子浸渍复合TiO2光催化剂的研究   总被引:5,自引:1,他引:5  
采用溶胶-凝胶-浸渍法制备了掺杂Fe^3 ,NH4^ ,SO4^2-的TiO2光催化剂粉体,并用XRD.IR.UV-Vis等方法对其结构进行了表征。结果表明,以TiO2干凝胶为母体,依次浸渍Fe^3 ,NH4^ ,SO4^2-的光催化剂粉体Fe^3 /NH4^ /SO4^2-/TiO2(浸)中锐钛矿相近100%,晶粒粒径分布均匀,最小粒径为4nm;与纯TiO2相比,紫外光谱响应红移15nm.以直接耐晒兰为模型反应物,评价了掺杂半导体TiO2的光催化降解性能。  相似文献   

7.
纳米ZnTiO3粉体的制备   总被引:1,自引:0,他引:1  
以ZnCl2、TiCl4为原料,以氨水为沉淀剂,采用特殊液相沉淀法制备锌的钛酸盐。经过透射电镜(TEM)和X射线衍射(XRD)表征,ZnTiO3粉体的粒径为2-3 nm,分散性好,粒径分布均匀,粒子呈球形或近球形属六方菱形微晶。  相似文献   

8.
采用沸腾回流均相沉淀法,以不同浓度的TiCl4和尿素为原料,制备出超细粉体TiO2,并利用STM及XRD对其进行表征.结果显示TiO2颗粒呈球状,一次粒径为29-34nm,TiCl4浓度较大时TiO2以金红石型为主,TiCl4浓度较小时TiO2为锐钛型、金红石型的混晶.  相似文献   

9.
以TiCl4、La2O3、Al片为原料,采用液相共沉淀法制备了La2O3/Al2O3/TiO2纳米复合粉体,采用DSC-TG、XRD、TEM技术对该纳米复合粉体进行了表征.结果表明纳米TiO2粉体经La2O3掺杂和Al2O3复合后,其耐温性能得到显著提高,该复合粉体经900℃煅烧后,粒径在32nm左右,锐钛矿含量约为77.2%(mol%)  相似文献   

10.
TiOSO4热水解法制备超细TiO2颗粒光催化剂   总被引:2,自引:0,他引:2  
采用廉价的TiOSO4为原料,通过热水解反应制备超细TiO2颗粒光催化剂,探讨了不同制备条件对光催化性能的影响,并采用XRD,TEM,BET,TG-DTG-DTA对催化剂进行表征,初步说明TiO2光催化活性与其晶型,粒径大小,比表面等微结构的关系。结果表明,经160℃热处理制备的TiO2粉末是球形和多孔型结构,比表面积约为170m^2/g,只有锐钛型单一晶相为无定型组成,颗粒平均粒径为20nm,其光催化活性与商业化Degussa P25 TiO2超细颗粒相近。  相似文献   

11.
The discovery of the prolific Ordovician Red River reservoirs in 1995 in southeastern Saskatchewan was the catalyst for extensive exploration activity which resulted in the discovery of more than 15 new Red River pools. The best yields of Red River production to date have been from dolomite reservoirs. Understanding the processes of dolomitization is, therefore, crucial for the prediction of the connectivity, spatial distribution and heterogeneity of dolomite reservoirs.The Red River reservoirs in the Midale area consist of 3~4 thin dolomitized zones, with a total thickness of about 20 m, which occur at the top of the Yeoman Formation. Two types of replacement dolomite were recognized in the Red River reservoir: dolomitized burrow infills and dolomitized host matrix. The spatial distribution of dolomite suggests that burrowing organisms played an important role in facilitating the fluid flow in the backfilled sediments. This resulted in penecontemporaneous dolomitization of burrow infills by normal seawater. The dolomite in the host matrix is interpreted as having occurred at shallow burial by evaporitic seawater during precipitation of Lake Almar anhydrite that immediately overlies the Yeoman Formation. However, the low δ18O values of dolomited burrow infills (-5.9‰~ -7.8‰, PDB) and matrix dolomites (-6.6‰~ -8.1‰, avg. -7.4‰ PDB) compared to the estimated values for the late Ordovician marine dolomite could be attributed to modification and alteration of dolomite at higher temperatures during deeper burial, which could also be responsible for its 87Sr/86Sr ratios (0.7084~0.7088) that are higher than suggested for the late Ordovician seawaters (0.7078~0.7080). The trace amounts of saddle dolomite cement in the Red River carbonates are probably related to "cannibalization" of earlier replacement dolomite during the chemical compaction.  相似文献   

12.
AcomputergeneratorforrandomlylayeredstructuresYUJia shun1,2,HEZhen hua2(1.TheInstituteofGeologicalandNuclearSciences,NewZealand;2.StateKeyLaboratoryofOilandGasReservoirGeologyandExploitation,ChengduUniversityofTechnology,China)Abstract:Analgorithmisintrod…  相似文献   

13.
本文叙述了对海南岛及其毗邻大陆边缘白垩纪到第四纪地层岩石进行古地磁研究的全部工作过程。通过分析岩石中剩余磁矢量的磁偏角及磁倾角的变化,提出海南岛白垩纪以来经历的构造演化模式如下:早期伴随顺时针旋转而向南迁移,后期伴随逆时针转动并向北运移。联系该地区及邻区的地质、地球物理资料,对海南岛上述的构造地体运动提出以下认识:北部湾内早期有一拉张作用,主要是该作用使湾内地壳显著伸长减薄,形成北部湾盆地。从而导致了海南岛的早期构造运动,而海南岛后期的构造运动则主要是受南海海底扩张的影响。海南地体运动规律的阐明对于了解北部湾油气盆地的形成演化有重要的理论和实际意义。  相似文献   

14.
Various applications relevant to the exciton dynamics,such as the organic solar cell,the large-area organic light-emitting diodes and the thermoelectricity,are operating under temperature gradient.The potential abnormal behavior of the exicton dynamics driven by the temperature difference may affect the efficiency and performance of the corresponding devices.In the above situations,the exciton dynamics under temperature difference is mixed with  相似文献   

15.
The elongation method,originally proposed by Imamura was further developed for many years in our group.As a method towards O(N)with high efficiency and high accuracy for any dimensional systems.This treatment designed for one-dimensional(ID)polymers is now available for three-dimensional(3D)systems,but geometry optimization is now possible only for 1D-systems.As an approach toward post-Hartree-Fock,it was also extended to  相似文献   

16.
17.
The explosive growth of the Internet and database applications has driven database to be more scalable and available, and able to support on-line scaling without interrupting service. To support more client's queries without downtime and degrading the response time, more nodes have to be scaled up while the database is running. This paper presents the overview of scalable and available database that satisfies the above characteristics. And we propose a novel on-line scaling method. Our method improves the existing on-line scaling method for fast response time and higher throughputs. Our proposed method reduces unnecessary network use, i.e. , we decrease the number of data copy by reusing the backup data. Also, our on-line scaling operation can be processed parallel by selecting adequate nodes as new node. Our performance study shows that our method results in significant reduction in data copy time.  相似文献   

18.
R-Tree is a good structure for spatial searching. But in this indexing structure,either the sequence of nodes in the same level or sequence of traveling these nodes when queries are made is random. Since the possibility that the object appears in different MBR which have the same parents node is different, if we make the subnode who has the most possibility be traveled first, the time cost will be decreased in most of the cases. In some case, the possibility of a point belong to a rectangle will shows direct proportion with the size of the rectangle. But this conclusion is based on an assumption that the objects are symmetrically distributing in the area and this assumption is not always coming into existence. Now we found a more direct parameter to scale the possibility and made a little change on the structure of R-tree, to increase the possibility of founding the satisfying answer in the front sub trees. We names this structure probability based arranged R-tree (PBAR-tree).  相似文献   

19.
There are numerous geometric objects stored in the spatial databases. An importance function in a spatial database is that users can browse the geometric objects as a map efficiently. Thus the spatial database should display the geometric objects users concern about swiftly onto the display window. This process includes two operations:retrieve data from database and then draw them onto screen. Accordingly, to improve the efficiency, we should try to reduce time of both retrieving object and displaying them. The former can be achieved with the aid of spatial index such as R-tree, the latter require to simplify the objects. Simplification means that objects are shown with sufficient but not with unnecessary detail which depend on the scale of browse. So the major problem is how to retrieve data at different detail level efficiently. This paper introduces the implementation of a multi-scale index in the spatial database SISP (Spatial Information Shared Platform) which is generalized from R-tree. The difference between the generalization and the R-tree lies on two facets: One is that every node and geometric object in the generalization is assigned with a importance value which denote the importance of them, and every vertex in the objects are assigned with a importance value,too. The importance value can be use to decide which data should be retrieve from disk in a query. The other difference is that geometric objects in the generalization are divided into one or more sub-blocks, and vertexes are total ordered by their importance value. With the help of the generalized R-tree, one can easily retrieve data at different detail levels.Some experiments are performed on real-life data to evaluate the performance of solutions that separately use normal spatial index and multi-scale spatial index. The results show that the solution using multi-scale index in SISP is satisfying.  相似文献   

20.
The geographic information service is enabled by the advancements in general Web service technology and the focused efforts of the OGC in defining XML-based Web GIS service. Based on these models, this paper addresses the issue of services chaining,the process of combining or pipelining results from several interoperable GIS Web Services to create a customized solution. This paper presents a mediated chaining architecture in which a specific service takes responsibility for performing the process that describes a service chain. We designed the Spatial Information Process Language (SIPL) for dynamic modeling and describing the service chain, also a prototype of the Spatial Information Process Execution Engine (SIPEE) is implemented for executing processes written in SIPL. Discussion of measures to improve the functionality and performance of such system will be included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号