首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
对多变量耦合且存在时变性的焦炉集气管压力系统,提出了一种基于支持向量机结合自适应PID的控制方法.采用支持向量机逆系统的方法来进行解耦控制,使得MIMO(多输入多输出)的集气管压力系统解耦成相互独立的SISO(单输入单输出)伪线性子系统.对于解耦后的SISO(单输入单输出)系统采用单神经元自适应控制算法,实时在线调整PID参数.仿真结果表明该控制策略实现了集气管压力系统的动态解耦控制,迅速跟踪变化,提高了系统的快速调节能力和稳态精度,增强了系统的鲁棒性,可以保证焦炉集气管压力稳定在现场工艺要求的范围之内.  相似文献   

2.
主动磁悬浮轴承的解耦控制   总被引:13,自引:1,他引:12  
运用解耦控制策略对六自由度刚性转子主动磁悬浮轴承(AMB)进行控制,应用基于逆系统理论的状态反馈线性化方法,设计出非线性控制器。将AMB这一多变量、强耦合及非线性的系统,分解为6个单变量无耦合的线性子系统,并对线性子系统进行了综合。仿真表明,此控制策略实现了各自由度之间的动态解耦,系统的动态性能较传统的PID控制方法有明显的提高。  相似文献   

3.
提出了一种无刷直流伺服电机的解耦控制方法。这种控制法将无刷直流伺服电机的多变量耦合系统解耦成多个单输入-单输出的子系统。然后对每个子系统进行反馈控制。本文还对位置跟踪进行PID控制,PID 系数通过极点配置方法得到。最后,给出了位置跟踪的计算机仿真结果验证解耦控制法的有效性。  相似文献   

4.
提出了交流永磁同步电机多目标输出跟踪控制的一般方法,利用微分几何中的微分同胚转换,先将永磁同步电机的非线性模型转换为与之反馈等价的线性模型,再采用线性系统中成熟的极点配置的方法对虚拟的电机线性系统进行控制器的设计.该方法实现了转子位置和转子磁链的动态解耦,将多输入多输出强耦合非线性的永磁同步电机系统分解成了两个独立的单输入单输出的子系统.在此基础之上提出了带干扰随动的位置伺服控制器的设计方法,不但实现了位置的动态跟踪控制,而且还能对扰动进行动态跟踪补偿.仿真结果证实了其有效性和优越性.  相似文献   

5.
为了最大限度地捕获风能,使风力发电系统按照最佳效率运行,提高发电质量,提出基于微分几何控制理论的双馈发电机非线性多输入多输出状态反馈解耦控制方案,通过非线性坐标变换和非线性状态反馈,使双馈发电机的磁链和转速两个的子系统实现动态完全解耦.理论推导和仿真实验表明,基于微分几何控制理论的解耦控制方案优于传统矢量控制方案.  相似文献   

6.
焦炉集气管压力是炼焦生产过程中重要的工艺参数,其值是否稳定,直接影响到煤气质量、焦炉寿命、焦炭质量和生产环境。针对焦炉集气管压力系统是一个强干扰、非线性和多变量耦合的复杂系统,采用LS-SVM辨识出焦炉集气管压力系统的逆系统模型,并将其串联在原系统之前,运用逆系统的方法将集气管压力系统解耦成2个相互独立的单输入单输出伪线性子系统。同时,对解耦后的系统采用非线性内模控制策略以保证系统的鲁棒性和稳定性。仿真和应用结果表明该控制策略的解耦控制效果较好,提高了系统的快速调节能力和跟踪精度,而且增强了系统的鲁棒性,可以保证焦炉集气管压力稳定在现场工艺要求的范围内。  相似文献   

7.
带钢热连轧机活套系统是一个耦合的多输入多输出非线性系统。针对活套系统的解耦控制问题,通过对活套系统动态耦合过程的分析,在工作点附近建立控制对象的动态数学模型。利用基于蚁群优化多个单神经元和RBF神经网络相结合的自适应控制策略以减弱系统的耦合影响。最后的仿真结果验证了本方法的有效性,表明解耦后的活套控制系统可获得更好的控制效果。  相似文献   

8.
基于BP神经网络的多变量解耦控制研究   总被引:4,自引:0,他引:4  
针对多输入、多输出耦合对象,研究基于BP神经网络的解耦控制,提出采用训练好的神经网络解耦器和神经网络调节器结合,对系统进行解耦控制的方法。通过对2输入2输出耦合对象进行计算机仿真结果表明,解耦控制效果很好。  相似文献   

9.
为了实现多变量非线性耦合系统的解耦控制,提出了一种基于CMAC与PID的复杂关联自适应解耦控制策略,并给出了详细算法。该控制策略采用PID控制器和CMAC控制器共同构成一个复合控制器,多个复合控制器通过多输入多输出线性神经网络,实施对复杂非线性耦合对象的控制作用。由于神经网络的自适应特性,可使得耦合系统逼近参考模型,实现解耦控制。仿真结果表明,该控制策略实现了耦合系统的解耦控制,并且具有较强的抗干扰能力和鲁棒性。因此采用此控制策略能够实现多变量非线性耦合系统的解耦控制。  相似文献   

10.
两电机同步系统的神经网络控制   总被引:1,自引:0,他引:1  
在对两台感应电机同步系统模型分析的基础上,依据同步系统的结构特点和控制要求,结合人工神经网络的非线性映射、自适应、自学习等能力,提出一种新的基于神经网络的两电机同步系统控制方案,其中神经网络控制器由基于RBF网络整定的自适应PID控制器和神经元解耦补偿器两部分组成.两个自适应PID控制器分别对速度控制回路和张力控制回路进行自适应控制,使系统具有更强的适应能力、更好的实时性和鲁棒性;神经元解耦补偿器综合两控制回路的耦合作用,通过训练网络权值,补偿各回路之间的耦合影响,实现速度和张力的解耦.试验结果表明:采用神经网络控制方法可以实现两电机同步系统中速度和张力的解耦控制,系统具有良好的动静态性能.  相似文献   

11.
提出一种基于逆系统方法的逐步反推(backstepping)滑模控制策略.在明确混合有源电力滤波器(SHAPF)的仿射非线性模型具有强耦合非线性特点后,利用逆系统方法进行线性化解耦,与原系统复合形成2个独立的伪线性子系统.设计伪线性子系统建模和参数不确定性误差的backstepping滑模控制器.与传统控制策略的仿真对比表明:所提控制策略可进一步提高SHAPF的滤波性能.  相似文献   

12.
针对三相异步电动机系统这一非线性、多变量、强耦合的控制对象,利用非线性几何理论中的反馈线性化方法,实现系统的精确解耦和全局线性化,从而可以利用线性控制理论对分解出来的线性化的转速子系统和转子磁链子系统进行控制,因而比较容易实现定速比控制.利用数字仿真可以证明这一方案是可行的,且系统具有良好的静、动态性能.  相似文献   

13.
放卷张力系统解耦控制器的设计   总被引:1,自引:0,他引:1  
针对凹版印刷机放卷系统对张力控制稳定性的要求,提出了一种利用自抗扰控制( ADRC)技术来设计张力解耦控制器的新方法.根据放卷系统的工作机理,建立了放卷张力系统的非线性耦合数学模型,用ADRC方法推导了张力系统的解耦模型,得到了系统阶数和静态解耦模型.在放卷张力系统模型的基础上,利用ADRC技术对放卷系统的张力解耦控制器进行了设计.控制器内部鲁棒性和抗干扰性能的对比仿真结果表明,所设计的ADRC解耦控制器可以较好地实现系统的解耦,并具有比传统比例积分微分控制器更好的内部鲁棒性和抗干扰性.  相似文献   

14.
燃料电池系统空气供应内模解耦控制器设计   总被引:2,自引:1,他引:1  
针对高压质子交换膜燃料电池空气供应系统的空气流量和进气压力具有较强的耦合性这个特性,将内模控制原理与多变量解耦控制理论相结合,提出了空气流量和进气压力的鲁棒解耦控制策略.仿真结果表明,采用内模解耦控制不仅能实现被控量的解耦,而且在系统模型失配的情况下可以获得比传统PID(比例-积分-微分)解耦控制器更好的鲁棒性;同时控制器参数少,整定简单.  相似文献   

15.
在三容系统物料平衡的基础上,建立了系统的数学模型,根据三容液位系统的非线性特性,运用解耦原理设计控制器,将三容系统的非线性耦合解耦为三个一阶子系统.通过力控组态软件实现解耦控制,并对整个液位控制系统进行组态,构成控制精度高的三容液位系统.  相似文献   

16.
链篦机-回转窑温度场控制系统具有大滞后、非线性、多变量、强耦合的特点,很难建立控制过程数学模型,常规PID控制器难以实现有效控制。本文深入研究了球团生产工艺机理,并对某球团二厂进行现场调研,采用了模糊控制和解耦控制的理论,设计了模糊控制器和解耦控制器,对链篦机-回转窑温度场控制系统进行了详细设计,并借助于MATLAB对模糊解耦控制器进行了仿真,仿真结果证实了模糊解耦控制器合理性,为操作工提供了操作指导,也为将来实现球团自动控制打下基础。  相似文献   

17.
多模型自适应PID解耦控制器   总被引:1,自引:0,他引:1  
对于一类非线性、强耦合、离散时间系统,提出了基于多模型的多变量自适应PID解耦控制策略,取消了系统平衡点参数已知的条件.控制策略包括一个完全自适应PID解耦控制器,一个参数重赋值自适应PID解耦控制器,多个参数固定PID解耦控制器和一个切换机制.理论分析表明,通过合理地选择切换函数,自适应PID控制器保证系统BIBO稳定,参数重赋值自适应PID控制器和参数固定PID控制器改善系统性能.  相似文献   

18.
针对铝合金脉冲MIG焊存在多参数强烈耦合并严重影响过程控制稳定性的问题,建立其多输入多输出(MIMO)控制模型.运用多变量控制理论分析系统的耦合程度,基于PI控制器设计前馈补偿解耦、反馈补偿解耦和对角矩阵解耦3种结构的解耦控制系统.介绍它们的结构和算法,分析控制对象的特点,对铝合金脉冲MIG焊过程进行仿真.仿真结果表明,采用对角矩阵解耦PI控制铝合金MIG焊接过程,能取得满意的动态和稳态性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号