首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新型多孔Ti-Nb合金因为具有良好的生物相容性,在硬组织植入材料领域中受到关注。本文利用纯Ti和Nb粉采用粉末烧结法制备多孔Ti-45Nb合金。通过造孔剂NH4HCO3调控多孔钛合金的孔隙度、孔隙尺寸、孔隙形貌、弹性模量和抗压强度。研究结果表明:随着造孔剂含量的增加,多孔Ti-45Nb合金的孔隙度和孔隙尺寸增大,孔隙连通性增加;弹性模量和抗压强度减小。多孔Ti-45Nb合金的孔隙特性和力学性能满足硬组织植入材料的基本要求。  相似文献   

2.
采用电弧离子镀技术在O相Ti22Al26Nb合金表面镀覆CrN以及CrN/Cr涂层并研究了其在800和900℃空气中的等温氧化行为,结果显示O相钛合金表面施加单一的CrN涂层后,涂层表面在氧化时形成了保护性的氧化膜Cr2O3层,因此合金受到了良好的高温防护,但是涂层和基体合金之间发生了明显的互扩散;在CrN涂层和钛合金基体之间施加纯Cr扩散障层后形成的CrN/Cr涂层,其表面除了象单一CrN涂层那样氧化后形成了一层连续、致密、结合良好的保护性氧化膜Cr2O3层外,还能有效的抑制涂层与基体合金之间的互扩散,此外扩散障Cr层的存在使得靠近其基体的晶粒也出现了长大现象。  相似文献   

3.
A novel Ti–Ni–Nb–Zr quaternary filler alloy with the composition of Ti-(19~25)Ni-(15~25)(Nb ?+ ?Zr) (wt.%) was designed. The filler alloy was composed of (Ti,Nb)ss, (Ti,Zr,Nb)ss ?+ ?(Ti,Zr)2Ni, α-Ti and Ti2Ni phases. It was fabricated into filler foil with a thickness of about 45 ?μm by a rapid solidification technique. The results indicate that the liquidus temperature of the Ti–Ni–Nb–Zr brazing alloy was about 978 oC, and the brazing alloy presented excellent wettability on TiAl substrate. The TiAl joint mainly consisted of β/B2 phase, Ti2Al, Ti2AlNi and α2-Ti3Al phases. The diffusion of Al atom from base metal to brazed seam led to the formation of Ti2Al and Ti2AlNi. Considering that no previously references on XRD pattern of Ti2AlNi compound can be found, Ti2AlNi cast alloy specimen was specially prepared and XRD peaks were specially labeled. The micro-hardness and bending strength tests of the Ti2AlNi phase were carried out, and the results were 761 HV and 192 ?MPa, respectively. The brazing parameters of 1010 oC/10 ?min offered the joint shear strength of 280 ?MPa at room temperature, and the joints exhibited tensile strength of 372 ?MPa at room temperature and 340 ?MPa at 750 oC, indicating that the newly developed filler alloy could offer a stable high-temperature strength.  相似文献   

4.
The phase co mpositions, microstructure and especi ally phase i nterfaces in the as-cast and heat-treated Nb– Ti–Si based ultrahigh temperature alloys have been investigated. It is shown that β(Nb,X)5Si3 and γ(Nb,X)5Si3 are the primary p hase s in the Nb–22Ti–16Si–5Cr–5Al (S1) (at%) and Nb–20Ti–16Si–6C r–4Al–5Hf–2B–0.06Y (S2) (at% ) alloys, respectively. The Nb solid solution (Nbss) is the primary phase in Nb–22Ti–14Si–5Hf–3Al–1. 5B –0.0 6Y (S3) (at%) alloy . An orientation relationship between Nbss and γ(Nb,X)5Si3 was determine d to be (1-10)Nb//(101-0)γ and [111]Nb//[0001]γ in the as-cast S2 and S3 alloys. Some original β(Nb,X)5Si3 transfor med into α(Nb,X)5Si3 because Al and Cr diffused from the β(Nb,X)5Si3 to Nbss during heattreatment at 1500 °C for 50 h in the S1 alloy. Mean while, Ti diffused from Nbss to β(Nb,X)5Si3, which induced a Ti to generate near the interface between Nbss and Ti-rich β(Nb,X)5Si3. The orientation relationship between the newl y-formed a Ti and previous Nbss was (110 )Nb//(1-10-1) αTi and [001]Nb//(12-3-1)αTi. Among the ( Nb,X)5Si3 phases , the contents o f Cr and Al in β(Nb,X)5Si3 are n earl y the same as those in γ(Nb,X)5Si3 but obviously hi gher than those in the α(Nb,X)5Si3, where as the content of Si in α(Nb,X)5Si3 is nearly the same a s that in γ(Nb,X)5Si3 but higher than that in the β(Nb,X)5Si3  相似文献   

5.
The microstructure of the Ti–V–Al shape memory alloy with refined grain and in-situ TiB phase was modified by doping minor Boron (B), which contributes to the superior mechanical performances and strain recovery characteristics. Compared with other quaternary Ti–V–Al-X alloys, the Ti–V–Al–B alloy showed the largest ultimate tensile stress due to the solution strengthening, grain refinement and precipitation strengthening of in-situ TiB phase. Moreover, the Ti–V–Al alloy added 0.1 ?at.%B possessed the maximum yield stress of 701 ?MPa and the largest tensile fracture strain of 27.6% at the temperature of 150 ?°C. Meanwhile, the excellent strain recovery characteristics with fully recoverable strain of 4% could be obtained due to B addition. Besides, B addition suppressed the precipitation of ω phase during thermal cycling and further improved the thermal cycling stability of the Ti–V–Al alloy.  相似文献   

6.
Electric field treatment (EFT) was applied on GH4169 alloy during aging at 500–800℃ to investigate the microstructure and property variation of the alloy under the action of EFT. The results demonstrate that the short-distance diffusion of Al, Ti, and Nb atoms can be accelerated by EFT, which results in the coarsening of γ′ and γ″ phases. Meanwhile, lattice distortion can be caused by the segregation of Fe and Cr atoms, owing to the vacancy flows migrating toward the charged surfaces of the alloy. Therefore, the alloy is hardened by the application of EFT, even if the strength of the alloy is partly reduced, which is caused by precipitation coarsening.  相似文献   

7.
Dissimilar joining of Ti3Al-based alloy to Ni-based superalloy has been carried out using gas tungsten arc(GTA) welding technology with Ti–Nb and Ti–Ni–Nb filler alloys.The joint welded with the Ti–Nb filler alloy contained much less interfacial brittle phases than the one using the Ti–Ni–Nb filler alloy.The average room-temperature tensile strength of the joint welded with Ti–Nb was 202 MPa and the strength value of the one welded with Ti–Ni–Nb was 128 MPa.For both fillers,the weak links of the dissimilar joints were the weld/In718 interfaces.The presence of TiNi,TiNi3 and Ni3Nb intermetallic compounds in the joint welded with Ti–Ni–Nb induced microcracks at the weld/In718 interface and deteriorated the mechanical properties of the joint.And the adoption of the Ti–Nb filler alloy decreased the formation tendency of interfacial brittle phases to some extent and thus enhanced the tensile strength of the joint.  相似文献   

8.
The effects of Cr, Al and B addition on the microstructure and high-temperature oxidation behaviors (at 1200, 1250 and 1300 ?°C) of Nb–Ti–Si based alloys were investigated. The results showed that the addition of Cr stabilized α-Nb5Si3, while Al promoted the formation of β-Nb5Si3 and adding B promoted the formation of γ-Nb5Si3. Among the three elements, Al and Cr were beneficial to oxidation resistance at 1200 ?°C, and B was favorable to the oxidation resistance at 1300 ?°C. At 1250 ?°C, Al and B had the same effects on the improvement of oxidation resistance. The ratio of these alloying elements might play an important role in enhancing oxidation resistance. The oxidation resistance of the three kinds of silicides was compared, and the sequence was: γ-Nb5Si3> β-Nb5Si3> α-Nb5Si3. To predict the effects of the investigated alloying elements on the oxidation resistance of Nb–Ti–Si based alloys in a wider range of concentration, an artificial neural network (ANN) model was established, showing excellent accuracy and generalization ability. With the instructions of the ANN model, the oxidation resistance can be optimized with less additions of alloying elements.  相似文献   

9.
To investigate the interdiffusion behavior of Ge-modified silicide coatings on an Nb-Si-based alloy substrate, the coating was oxidized at 1250℃ for 5, 10, 20, 50, or 100 h. The interfacial diffusion between the (Nb,X)(Si,Ge)2 (X=Ti, Cr, Hf) coating and the Nb-Si based alloy was also examined. The transitional layer is composed of (Ti,Nb)5(Si,Ge)4 and a small amount of (Nb,X)5(Si,Ge)3. With increasing oxidation time, the thickness of the transitional layer increases because of the diffusion of Si from the outer layer to the substrate, which obeys a parabolic rate law. The parabolic growth rate constant of the transitional layer under oxidation conditions is 2.018 μm·h-1/2. Moreover, the interdiffusion coefficients of Si in the transitional layer were determined from the interdiffusion fluxes calculated directly from experimental concentration profiles.  相似文献   

10.
Selective laser melting (SLM) technology plays an important role in the preparation of porous titanium (Ti) implants with complex structures and precise sizes. Unfortunately, the processing characteristics of this technology, which include rapid melting and solidification, lead to products with high residual stress. Herein, an in situ method was developed to restrain the residual stress and improve the mechanical strength of porous Ti alloys during laser additive manufacturing. In brief, porous Ti6Al4V was prepared by an SLM three-dimensional (3D) printer equipped with a double laser system that could rescan each layer immediately after solidification of the molten powder, thus reducing the temperature gradient and avoiding rapid melting and cooling. Results indicated that double scanning can provide stronger bonding conditions for the honeycomb structure and improve the yield strength and elastic modulus of the alloy. Rescanning with an energy density of 75% resulted in 33.5%–38.0% reductions in residual stress. The porosities of double-scanned specimens were 2%–4% lower than those of single-scanned specimens, and the differences noted increased with increasing sheet thickness. The rescanning laser power should be reduced during the preparation of porous Ti with thick cell walls to ensure dimensional accuracy.  相似文献   

11.
CuAlBeX系形状记忆合金记忆疲劳特性   总被引:1,自引:0,他引:1  
用简单的恢复角法对自行设计并熔炼的CuAlBeX系形状记忆合金进行了记忆能力与记忆寿命的探索,并与Cu24.5Zn4Al合金对比,结果表明,Cu11.6Al0.4Be0.2Cr具有最佳的记忆能力与记忆寿命,尤其是正火状态,正火及正火并100℃~200℃时效状态以及淬火并100℃~200℃时效状态均有优良的记忆性能,具有工程应用前途。  相似文献   

12.
本文对27种常见元素(Ag、Al、As、B、Be、Ca、Cd、Co、Cr、Cu、Fe、Hg、La、Mg、Mn、Mo、Na、Nb、Ni、P、Pb、Sb、Si、Ti、V、W、Zn)的最杰出线的光谱干扰进行了研究,发现了一些光谱表上从未记载过的干扰线。  相似文献   

13.
Al2O3/Ni—Ti钎料/Nb的封接及其组织和性能的研究   总被引:7,自引:0,他引:7  
探讨了用Ni-Ti高温合金对Al2O3陶瓷与金属Nb的封接行为.结果表明,Ni-Ti钎料对Al2O3陶瓷有良好的润湿性及高的焊后界面强度.钎料中的Ti与Al2O3中的O在反应界面上富集和结合是两种材料实现连接的原因.Nb溶入钎料中对减弱界面残余应力、提高强度有利  相似文献   

14.
介绍了用Si(Li)探测器作探头的携带式高分辨合金分析仪的结构原理和实测结果。其仪器的分析范围可覆盖Ag,Cd,Sn,Sb,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,As,Hf,Au,Ta,W,Pb,Bi,Zr,Nb和Mo等元素,采用^109Cd和^55Fe作激发源,由笔记本式计算机与电子插件所组成的计算机多道分析系统,实现数据的采集和显示,元素间干扰效应的修正,合金识别以及牌号查询与合  相似文献   

15.
通过热力学平衡相计算方法,系统研究了某新型镍基粉末高温合金时效温度下合金元素对热力学平衡相析出行为的影响.计算结果表明:René104合金析出的主要平衡相为γ′、MC、M23C6、M3B2和TCP相.Cr和Co含量主要影响TCP相的析出行为及γ′相的析出温度,Cr含量对M23C6和M3B2的析出行为有一定的影响,Cr的建议质量分数为13%;Mo和W含量影响TCP相和M3B2的析出行为.质量比Al/Ti和Nb/Ta影响γ′相的析出行为,建议控制Al/Ti和Nb/Ta比平衡,以使γ′相起到理想的强化效果.C和B含量显著影响碳化物和硼化物的析出量,还可间接抑制TCP相析出;Zr含量对MC和M23C6碳化物的析出有影响;增Co降Cr和调节合金元素含量以获得小的点阵错配度是第3代涡轮盘用粉末冶金高温合金成分优化设计的趋势.  相似文献   

16.
以十二胺(DDA)为模板剂,正硅酸四乙酯(TEOS)为硅源,以硝酸铬(Cr(NO3)3·9H2O)为铬源,钛酸四丁酯(TBOT)为钛源,偏铝酸钠(NaAlO2)为铝源,在一定条件下反应,分别制备了含杂原子Cr,Ti和Al的介孔HMS分子筛.采用粉末X-射线衍射(XRD)、紫外可见漫反射光谱(UV-Vis)、N2吸附—脱附及透射电镜(TEM)等手段对杂原子HMS分子筛进行了表征.XRD结果表明,Cr,Ti和Al杂原子分别嵌入到HMS分子筛骨架;N2吸附—脱附的孔径分布及TEM结果表明杂原子介孔分子筛孔径集中在4nm左右并具有蚯蚓状的孔道结构.  相似文献   

17.
A new titanium alloy Ti12.5Zr2.5Nb2.5Ta (TZNT) for surgical implant application was synthesized and fully annealed at 700℃ for 45 min. The microstructure and the mechanical properties such as tensile properties and fatigue properties were investigated. The results show that TZNT mainly consists of a lot of lamella α-phase clusters with different orientations distributed in the original β-phase grain boundaries and a small amount of β phases between the lamella α phases. The alloy exhibits better ductility, lower modulus of elasticity, and lower admission strain in comparison with Ti6Al4V and Ti6Al7Nb, indicating that it has better biomechanical compatibility with human bones. The fatigue limit of TZNT is 333 MPa, at which the specimen has not failed at 107 cycles. A large number of striations present in the stable fatigue crack propagation area, and many dimples in the fast fatigue crack propagation area are observed, indicating the ductile fracture of the new alloy.  相似文献   

18.
李辉 《科学技术与工程》2006,6(18):2942-2944
Philips MagiX Pro型X射线荧光光谱仪的基本参数法测定钢铁中的Al、Si、P、Ti、V、Cr、Mn、Co、W、Cu、Ni、Nb、Mo等13种元素。方法准确可靠,稳定性好、速度快。测得曲线涵盖合金牌号手册中常用碳钢、中低合金钢、不锈钢、工具钢等90%以上的牌号。线性范围内实现无标定量分析。  相似文献   

19.
党参中无机元素的组分分析   总被引:1,自引:0,他引:1  
本文用电感偶合等离子发射光谱,原子吸收光谱分析了常参「Codonopsis Pilosula Nannf」中Fe,Cu,Zn,Mn,Cr,Mg,Ca,Se,Al,P,B,Sr,Hg,Pb,Ba,As,Ce,Be,Ni,Nb,V,Ti,Co,Ge,Mo,Cd,Li,Te,W,Ag,Si,Bi,Sn等33种无机元素的组分含量。  相似文献   

20.
Computational diffusion kinetics(CDK),with a spirit of and being coupled with the computational thermodynamics(CT,or called as the CALPHAD technique),plays increasingly important role in the alloy design/optimization and microstructure control during the processing of advanced metallic materials.This paper is to highlight recent progress of CDK in research with great focus on novel Ti and Zr alloys,which was largely performed in the authors’group.It ends with one representative example of the applications of CDK,coupled with CT,quantitative phase field,and three-dimensional(3D)statistical calculation,in designing the heattreatment schedule for the dual phase(αβ)Ti–6Al–4V alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号