首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探究不同碳源对厌氧氨氧化(ANAMMOX)菌耦合好氧氨氧化菌(AOB)以及ANAMMOX菌耦合短程反硝化菌脱氮性能的影响,在进水NH_4~+-N与NO_2~--N质量浓度比为1.0∶0.6和KHCO3质量浓度为1.25~2.50 g/L的条件下运行系列ANAMMOX耦合AOB血清瓶。研究结果表明:当KHCO_3质量浓度分别为2.00 g/L和2.50 g/L时NH_4~+-N去除率为100%,可积累NO_2~--N质量浓度达12.0 mg/L以上。在进水质量浓度ρ(NH_4~+-N)/ρ(NO_3~--N)为1∶1的条件下运行ANAMMOX耦合短程反硝化序批式反应器(ASBR),第80 min时NH_4~+-N去除率为100%;当进水质量浓度ρ(NH_4~+-N)/ρ(NO_3~--N)为1∶2,COD质量浓度为405.1 mg/L时,最高可积累NO_2~--N质量浓度达82.2 mg/L,第120 min时NH_4~+-N去除率为100%;当ASBR中过量通入NO_3~--N时,可使NO_2~--N的积累时间延长,此时颗粒污泥形态较完整。ANAMMOX耦合短程反硝化菌可利用葡萄糖作为电子供体进行短程反硝化,经过葡萄糖驯化后,NH_4~+-N去除率提高到43.8%。  相似文献   

2.
COD进水浓度对SBMBBR脱氮除磷效果影响   总被引:8,自引:0,他引:8  
研究了序批式移动床生物膜反应器(SBMBBR)中COD进水浓度对同步脱氮除磷效果的影响.维持进水PO3-4-P浓度为10 mg/L、NH3-N浓度为40 mg/L左右,COD浓度为200~800 mg/L,研究了反应器的脱氮除磷效果.结果表明:厌氧释磷量在COD进水浓度为450 mg/L时达到最大,为61.2 mg/L;之后,增加COD进水浓度不利于磷的释放.在厌氧段初期,TN便有超过30%的损失,可能是因生物吸附造成的.好氧时TN和磷均损失较大,说明在生物膜上很可能发生了同时硝化反硝化和反硝化聚磷.一定范围的COD浓度能促进TN的去除.TN去除率在COD进水浓度为450 mg/L时达到最大,为87.8%,氮磷的去除与生物膜的生物量和生物膜厚度密切相关.  相似文献   

3.
目的研究ANAMMOX工艺在生物滤池中的脱氮性能,以提高该工艺在实际运行中的脱氮效率.方法采用ANAMMOX生物滤池作为反应器,控制反应水温在25~31℃,逐步增加进水NH+4-N和NO-2-N的基质质量浓度,研究ANAM M OX生物滤池工艺在不同质量浓度负荷下各滤层脱氮规律.结果 ANAMMOX生物滤池生物量分布呈现先增后减再逐渐趋于平缓的趋势.厌氧氨氧化生物量集中分布在0~50 cm滤层,进水口处生物量较低.进水NH+4-N和NO-2-N的基质质量浓度分别在90 mg/L、120 mg/L时去除效率最佳.当进水NH+4-N和NO-2-N的基质质量浓度分别高于120 mg/L、160 mg/L时,ANAMMOX脱氮性能受到较大的抑制作用.结论进水NH+4-N和NO-2-N的基质质量浓度对ANAMMOX脱氮性能有较大影响.  相似文献   

4.
高氨氮猪场废水的亚硝酸型脱氮研究   总被引:4,自引:2,他引:4  
猪场废水脱氮处理前一般要经过厌氧消化处理,完全厌氧消化能去除废水中大部分有机物,但这同时降低了废水中的COD/NH4^ -N(1-3),根据厌氧消化四阶段理论,控制厌氧消化到水解或产乙酸阶段,使废水中的COD/NH4^ -N维持在较高的水平(7-10),为后续脱氮处理创造条件,本实验对比分析了运用缺氧/好氧SBR工艺处理这两种COD/NH4^ -N不同的废水的脱氮效果,实验结果表明:两的脱氮过程都是通过短程硝化反硝化实现的,反应器中的NH4^ -N浓度和pH值是控制亚硝酸型硝化的重要因素,经过部分厌氧消化的废水由于保持了较高的COD/NH4^ -N脱氮效果明显好于完全厌氧消化废水,NH4 -N去除率达到98%以上,但出水反硝化不完全,投加乙酸钠后出水NOx^--N减少到10-20mg/L,投加量以275mg/L为宜。  相似文献   

5.
为提高生活污水传统处理工艺反硝化脱氮能力并在系统内部实现污泥减量,设计水解酸化-缺氧-好氧(H-A-O)生物脱氮及污泥减量组合工艺。试验采用连续运行方式,以实际生活污水为对象,进水化学需氧量(COD)为220~410 mg/L,进水NH4+-N质量浓度为36~58 mg/L,硝化液回流比(r)为300%。试验结果表明:水解酸化作用使原水的可生化性提高60%;系统在无外加碳源和碱度条件下,COD,NH14+-N和TN的去除率分别达到90%,95%和74%,其中总氮(TN)去除效果提高12%;当以污泥水解酸化出水和生活污水作为反硝化碳源时,最大NO3--N反硝化速率分别为0.75 mg/min和0.66 mg/min;H-A-O系统利用水解酸化作用实现剩余污泥减量为37%,同时提高系统的脱氮效果。  相似文献   

6.
A2SBR 反硝化除磷系统的启动和脱氮除磷性能   总被引:2,自引:0,他引:2  
采用厌氧-缺氧SBR(A2SBR)系统,研究了反硝化除磷单污泥系统的启动条件,并考查了该工艺的脱氮除磷效能。结果表明,以城市生活污水处理厂活性污泥为种泥,在厌氧相进水COD浓度250mg·L-1,缺氧相进水NO-3-N浓度30mg·L-1左右时,通过"厌氧-沉淀排水-缺氧-沉淀排水"的周期性运行,可在29d内成功启动A2SBR反硝化除磷系统;运行方式改为"厌氧-缺氧-沉淀排水"后,A2SBR系统很快达到了稳定,在厌氧相和缺氧相HRT分别为3h和4.5h的条件下,其脱氮和除磷效率可分别达到90%和95%,COD去除率大于88%,最终出水的COD,NO-3-N和PO3-4-P浓度可分别降至28,3.35,0.57mg·L-1,表现出良好的反硝化脱氮和除磷性能。  相似文献   

7.
SBR反应器实现半亚硝化的启动策略   总被引:2,自引:0,他引:2  
由于碳源不足,传统脱氮工艺难以处理高NH4+-N低碳氮比废水,采用短程硝化与厌氧氨氧化相结合的工艺可以处理此类废水,而半亚硝化是上述组合工艺的先决条件.采用低溶解氧和半碱度为启动策略,实现SBR反应器的半亚硝化作用,以期为后续厌氧氨氧化反应器提供合适进水水质.实验结果表明:水温(26±1)℃,控制初始碱度和NH4+-N的摩尔比为1,进水pH保持7.5±0.1,溶解氧为(0.8±0.2)mg/L的条件下,可将NO2--N累积率维持在95%,且出水中NO2--N和NH4+-N浓度相近,而NO3--N质量浓度低于5mg/L,反应器成功启动.进水化学需氧量(COD)对半亚硝化效果几乎没有影响.一个运行周期内三氮及COD的变化趋势说明,采用半碱度策略控制半亚硝化进程是可行的,能够保证出水NO2--N/NH4+-N摩尔比约为1.  相似文献   

8.
在低基质质量浓度条件下,对海绵填料生物膜反应器和颗粒污泥反应器进行厌氧氨氧化的脱氮性能进行对比研究。研究结果表明:当进水NH4+-N和NO2--N质量浓度分别为(17.03±2.16)mg/L和(19.17±2.33)mg/L时,颗粒污泥厌氧氨氧化反应器的脱氮性能明显优于海绵填料生物膜反应器的脱氮性能;保持对NH4+-N和NO2--N的平均去除率为90%以上时,通过缩短水力停留时间,颗粒污泥反应器容积氮去除速率可达3.55 kg.N/(m3·d),而海绵填料生物膜反应器仅为0.94 kg·N/(m3·d);进水中NO2--N与NH4+-N的质量浓度比能影响反应器的化学计量关系。  相似文献   

9.
有机碳源环境下的厌氧氨氧化批式实验   总被引:4,自引:0,他引:4  
通过厌氧氨氧化批式实验,研究了在有机碳源环境下COD/NH4 -N比、pH值以及NO2--N浓度对厌氧氨氧化反应的影响.结果表明:在有机碳源环境下,厌氧氨氧化作用和反硝化作用可以同时存在;适宜的COD/NH4 -N比值范围在0~1.57之间;适宜的pH值范围应该在6.02~8.50之间,最适pH值为8.00;为了得到较好的脱碳和脱氮效果,在初始COD值为300mg/L时,初始NO2--N浓度不宜超过500mg/L,否则会抑制厌氧氨氧化反应和反硝化反应的进行.  相似文献   

10.
CAST分段进水深度脱氮性能及在线控制   总被引:5,自引:0,他引:5  
以生活污水为处理对象,考察循环式活性污泥法(CAST)分段进水深度脱氮在线控制工艺中有机物降解、硝化和反硝化反应过程中氧化还原电位(ORP)及pH值的变化规律,建立这些控制参数与有机物去除、硝化和反硝化反应过程中主要污染物指标间的相关关系。研究结果表明:根据ORP及pH曲线上的特征点适时地停止曝气与进水缺氧搅拌,能更加有效地控制CAST多段进水工艺,达到深度脱氮的目的,并尽可能降低运行成本;当进水COD为155.0~443.6mg/L和NH4+-N质量浓度为57.98~82.40mg/L时,系统最终出水COD(化学需氧量)低于40mg/L,NH+4-N质量浓度低于0.5mg/L,TN(总氮)质量浓度低于2.0mg/L;在17,23和30℃时,升高温度能显著提高系统反硝化效果,反硝化速率随温度上升而递增;当原水有机碳源充足时,分段进水次数增多,由于反硝化速率加快,反应时间缩短,且反应末端外碳源投加量减少;采用CAST分段进水深度脱氮工艺系统除磷性能稳定,且去除率可达90%以上。  相似文献   

11.
为进一步降低猪场示范工程排放废水中COD和氨氮的浓度,本试验尝试以葡萄糖配水模拟猪场废水,在同一个UASB反应器内实现同步的厌氧氨氧化、甲烷化和反硝化反应,以达到同时除碳脱氮的目的。结果表明,接种不同活性污泥于同一个UASB反应器内,经过约48 d反应器启动成功。在完成启动的反应器中添加亚硝酸盐氮和氨氮,使pH维持在7.3~8.3,温度、进水流量、回流量和水力停留时间等均与启动阶段保持一致,可逐步实现同步厌氧氨氧化和甲烷化反硝化。此阶段进水CODCr为500 mg/L,CODCr去除率在80%~90%之间,NO2-N去除率接近100%,氨氮去除率较低且处在波动状态。但是适当降低进水中有机物浓度,可在同时存在亚硝酸盐氮和氨氮的情况下提高厌氧氨氧化菌的竞争能力。当仅降低进水CODCr浓度(由500mg/L降至100 mg/L)时,氨氮去除率能缓慢升至30%以上。  相似文献   

12.
研究三维电极-生物膜反应器对加载电场的响应性,为寻求反应器有效合理的自动控制方式提供理论指导.为了充分利用三维电极体系阳极产氧为硝化菌提供好氧环境实现氨氮硝化,利用阴极产氢为反硝化菌提供缺/厌氧环境和电子供体实现反硝化脱氮,实验设计并稳定运行了三维电极-生物膜脱氮反应器.通过考察不同电流密度条件下,系统溶解氧(DO)、pH、脱氮性能的变化,研究电流密度对三维电极-生物膜反应器中微生物生长的微环境和微生物反硝化脱氮所需电子供体的影响,评价三维电极-生物膜脱氮系统的电场响应性.结果表明,在电流密度为0.013 4 mA/cm2时,NH+-N转化率可达90%,NO3--N和TN去除率70%以上;三维电极-生物膜脱氮系统的极限电流密度在0.020 1 mA/cm2附近;极限电流密度范围内,电流密度引起系统DO、pH的变化均在系统承受范围内;电流密度的提高可提高阴极NO3--N反硝化效率,但对阳极NH4+-N的硝化无明显影响,极限电流密度范围内均无NO2--N积累.  相似文献   

13.
应用两级上流式厌氧污泥床(UASB)-缺氧/好氧(A/O)-序批式反应器(SBR)深度处理早期和晚期垃圾渗滤液.首先在一级UASB(UASB1)中实现反硝化,在二级UASB(UASB2)中通过产甲烷降解有机物,在A/O反应器的好氧区进行NH4+-N的硝化,最后在SBR中去除残余NH4+-N及通过反硝化去除NO2--N和NO3--N深度脱氮.试验结果表明:早期渗滤液ρ(COD),ρ(TN)和ρ(NH4+-N)分别为14.8,1.8和1.3 mg/mL,最终出水ρ(TN),ρ(NH4+-N),ρ(NO2--N)和P(NO3--N)分别为28,4,3.4和1.9 mg/L,获得了大于98%的TN和NH4+-N去除率.晚期渗滤液ρ(COD)为2.5 mg/mL;ρ(TN),ρ(NH4+-N)分别为3.0和2.9 mg/mL时,获得99%以上的TN和NH4+-N去除率.最终出水ρ(NH4+-N),ρ(NO2--N)和P(NO3--N)都小于10 mg/L,最终出水ρ(TN)为26~32 mg/L.  相似文献   

14.
采用单级曝气生物滤池系统处理玉米青贮渗出液,考察水力负荷、气水比、有机负荷和滤床高度对BAF系统运行的影响.研究结果表明:当水力负荷从0.5 m3/(m2·h)升高到3.0 m3/(m2·h)过程中,COD和NH3-N的去除率先升高后降低,当水力负荷为1.5 m3/(m2·h)时,COD和NH3-N的去除率达到最大,分别为83.5%和74.9%;增加气水比使得系统中溶解氧充足,可明显提高COD和NH3-N去除率,当气水比为3.5∶1时,COD和NH3-N的去除率达到最大,分别为87.5%和75.2%;低有机负荷不利于COD和NH3-N的去除,当有机负荷(以COD计)为2.4kg/(m3.d)时,COD和NH3-N去除率分别为49.6%和58.5%,但过高的有机负荷对NH3-N去除率影响较大,当有机负荷为7.2 kg/(m3·d)时,NH3-N去除率为61.7%;滤床高度对硝化反应去除NH3-N影响较大,NH3-N生物硝化反应去除行为主要发生在0.6~1.0 m区域,因此,适当增加滤床高度可以提高NH3-N去除率;采用BAF系统处理玉米青贮渗出液是可行的,为同类废水处理和控制农村水环境质量提供借鉴.  相似文献   

15.
以模拟废水为对象,在传统的流化床反应器内,将活性污泥和经驯化的反硝化污泥按适当比例混合后,用聚乙烯醇(PVA)加适当添加剂将其包埋,并对短程硝化反硝化脱氮进行了研究.结果表明,在进水NH4+-N平均为53.60mg/L,COD为281.19mg/L,HRT12h,调控温度、溶解氧、pH等,出水亚硝化率和TN去除率分别可达95%和85%以上,短程硝化反硝化脱氮较理想.当进水COD含量从150mg/L增加到750mg/L,TN去除率从73.66%提高到96.79%.适合包埋颗粒短程硝化反硝化脱氮的最佳溶解氧浓度约为4.0mg/L.当pH一直维持在8.0左右,温度从30℃降到25℃过程中,短程硝化反硝化并未遭破坏.当温度维持在25℃,pH从8.0降到7.5,连续运行约5个周期后,短程硝化反硝转变为全程的硝化反硝化.  相似文献   

16.
上流式曝气生物滤池脱氮性能研究   总被引:12,自引:0,他引:12  
文章对单级上流式曝气生物滤池的脱氮性能进行了初步研究。研究结果表明,在进水有机负荷为4~12kgCOD/(m3·d)、水力负荷1~4m3/(m2·h)及气水比1∶1~5∶1的工艺条件下,COD和NH3-N的去除率达到70%~86%和53%~79%。在水力负荷较低时,控制气水比可以实现同步硝化反硝化。  相似文献   

17.
采用玉米芯填料固体碳源生物膜反应器,应用同步硝化反硝化(SND)技术处理低碳氮比城市污水,考察不同水力负荷和C/N比对系统脱氮效果的影响,并对玉米芯挂膜前后表面形态进行分析.结果表明,在水力负荷为0.045 m3·m-2·h-1时,NH+4-N和TN平均去除率分别为92.16%和91.18%;当进水C/N比控制在0~12时,出水CODCr浓度均在50 mg·L-1以下,TN平均去除率在79.63%以上,脱氮效果随进水C/N比的增加而提升;通过电镜扫描表明玉米芯是一种较好的固体碳源生物膜反应器填料,适合低碳氮比城市污水的脱氮处理.  相似文献   

18.
采用升流式厌氧污泥层反应器(UASB)-气升式环流反应器(ALR)的组合工艺处理高氨氮垃圾渗滤液。稳定运行阶段,通过添加氯化铵,考察NH4+-N浓度对UASB-ALR工艺稳定运行的影响。结果表明,当UASB进水氨氮浓度超过2 660mg/L时,UASB的有机物去除率下降到60%。当ALR进水中NH4+-N浓度达到3140 mg/L时,ALR对COD和NH4+-N去除率分别下降到12.8%和57%。经过7 d的恢复期,UASB对COD的去除率回升到78.5%,ALR反应器的COD及NH4+-N去除率均无法恢复到抑制前的水平。  相似文献   

19.
为了解决A2O工艺生物脱氮除磷不稳定、出水氮磷难以达标的问题,在A2O工艺好氧段添加悬浮式生物填料以保证高质量浓度的硝化细菌及高硝化率.考察不同COD与总氮质量浓度比x、旁流比对工艺脱氮和除磷的影响.此外,在COD与总氮质量浓度比较低条件下对装置进行了改装,即在厌氧段前添加了一段预缺氧段,使其达到深度脱氮除磷的效果.试验结果表明:当进水x=3.6~8.1,COD,TN和TP去除率根据硝化液回流比的不同而不同,x和硝化液回流比越高,出水硝态氮越低;当x为8.1,硝化液回流比为300%时,脱氮除磷效果最好,其出水硝态氮质量浓度仅为4.23 mg/L.当COD与总氮质量浓度比较低时,TP的去除率较低,当x>4.5时,磷的去除率几乎为100%.A2O系统中生物膜硝化作用占总硝化作用的81.6%,而活性污泥硝化作用只占18.4%.这说明生物膜具有良好的硝化作用.  相似文献   

20.
利用NH4+,NO2-,NO3-和pH等4种离子选择性微电极,研究了不同基质浓度条件下厌氧氨氧化系统中颗粒污泥内部氮素迁移转化的空间分布特征.结果表明:当基质浓度充足时,从颗粒污泥表面到内部的氨氮和亚硝酸盐氮浓度以一定比例同时降低,发生了以厌氧氨氧化反应为主的特征反应;当氨氮浓度受限时,污泥颗粒外层区域(0~1 200μm)发生厌氧氨氧化脱氮途径,内层区域(1 200~2 500μm)发生以亚硝酸盐氮降低为特征的反硝化途径;当只存在NOx-时,颗粒污泥内部发生反硝化的特征反应.因此,厌氧生物转盘氨氧化系统中至少存在厌氧氨氧化和自养反硝化两种生物脱氮途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号