首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
综合类   58篇
  2018年   1篇
  2015年   4篇
  2014年   10篇
  2013年   7篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2007年   2篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
排序方式: 共有58条查询结果,搜索用时 108 毫秒
1.
采用"单级UASB-A/O组合工艺"处理实际晚期城市生活垃圾渗滤液,考察不同有机负荷(OLR,organic loading rate)条件下氮与有机物的转化和去除及其产生的综合影响。研究结果表明:厌氧与好氧系统的动态缓冲能力使得COD总去除率均在90%以上;OLR过低与过高时,氨氮去除率分别因碱度回收不足与异养菌竞争作用而下降;总氮去除率随OLR的提升而升高,而当OLR过低时,受反硝化碳源与氨氮降解效率的双重限制,其去除率明显偏低;同时甲烷化反硝化UASB中挥发性脂肪酸(VFA,volatile fatty acid)与碱度的比值始终低于0.3,OLR在6.15~15.58 kg/(m3·d)范围内时反硝化菌与产甲烷菌活性能维持动态平衡;在应对OLR变化方面,DO与pH曲线作为实时控制的电化学参数时各有特点,应当针对不同水质研究其变化规律并使两者结合运用;A/O亚硝积累率随着OLR的增加而呈现小幅度上升。  相似文献   
2.
垃圾渗滤液中有机物对其厌氧氨氧化的影响   总被引:4,自引:0,他引:4  
为了考察垃圾渗滤液中有机物对其厌氧氨氧化反应的影响,保证晚期垃圾渗滤液的深度脱氮,采用短程硝化SBR联合厌氧氨氧化SBR(ASBR)两级系统处理氨氮为(2 000±100)mg/L、COD为(2 200±200)mg/L的实际晚期垃圾渗滤液进行试验研究.短程硝化SBR运行了100d,亚硝酸盐积累率达到了95%以上.ASBR采用进水逐步加大渗滤液掺入比例的方式进行驯化.实验结果表明,随着掺入比例的增大,进水可降解COD增加到150 mg/L左右时,ASBR的氮负荷速率从1.20 kg/(m3·d)降到了0.28 kg/(m3·d),氮去除速率从1.10 kg/(m3·d)下降到了0.19 kg/(m3·d),表明系统趋于崩溃.当ASBR进水可降解COD再次降低到50 mg/L左右时,系统的厌氧氨氧化菌活性得到了恢复,最大的氮负荷速率和氮去除速率分别达到了1.55和1.20 kg/(m3·d).定量PCR试验表明,当系统的厌氧氨氧化菌活性得到恢复后,厌氧氨氧化菌占全细菌的比例达到了试验期间的最大值1.94%.  相似文献   
3.
应用两级上流式厌氧污泥床(UASB)-缺氧/好氧(A/O)-序批式反应器(SBR)深度处理早期和晚期垃圾渗滤液.首先在一级UASB(UASB1)中实现反硝化,在二级UASB(UASB2)中通过产甲烷降解有机物,在A/O反应器的好氧区进行NH4+-N的硝化,最后在SBR中去除残余NH4+-N及通过反硝化去除NO2--N和NO3--N深度脱氮.试验结果表明:早期渗滤液ρ(COD),ρ(TN)和ρ(NH4+-N)分别为14.8,1.8和1.3 mg/mL,最终出水ρ(TN),ρ(NH4+-N),ρ(NO2--N)和P(NO3--N)分别为28,4,3.4和1.9 mg/L,获得了大于98%的TN和NH4+-N去除率.晚期渗滤液ρ(COD)为2.5 mg/mL;ρ(TN),ρ(NH4+-N)分别为3.0和2.9 mg/mL时,获得99%以上的TN和NH4+-N去除率.最终出水ρ(NH4+-N),ρ(NO2--N)和P(NO3--N)都小于10 mg/L,最终出水ρ(TN)为26~32 mg/L.  相似文献   
4.
利用SBR反应器,考察不同溶解氧(DO)条件下NO2-反硝化过程中N2O产生及释放过程。研究结果表明:控制曝气量为0.3 L/min,进水NO2--N质量浓度为40 mg/L,体系DO质量浓度分别为0,0.1,0.3,0.5和0.7 mg/L时,反硝化过程N2O释放量分别为0.41,0.60,2.62,4.98,6.83 mg/L;随DO质量浓度的增加,反硝化速率明显降低;当DO质量浓度由0 mg/L增至0.7 mg/L时,每克混合液悬浮固体(MLSS)的NO2-反硝化速率由14.9 mg/(L.h)降至10.2 mg/(L.h),每克MLSS的N2O产生速率由0.2 mg/(L.h)增至1.9 mg/(L.h)。其原因为:高DO质量浓度对氧化亚氮还原酶具有较强的毒性,抑制了N2O的进一步还原过程;高NO2-的存在导致抑制了氧化亚氮还原酶的活性。降低A/O和A2/O等生物脱氮过程中缺氧反应器内部DO质量浓度,保证严格缺氧条件,是减少短程生物反硝化过程中N2O产量的关键因素。  相似文献   
5.
氧化沟工艺及其生物脱氮原理   总被引:2,自引:0,他引:2  
系统介绍了氧化沟工艺的基本工艺特征和运行方式等,结合国内外研究的进展,对同时硝化反硝化的形成机理及其对不单独设置缺氧段的氧化沟工艺的应用进行了分析,对于氧化沟的存在的问题和发展前景做了展望。  相似文献   
6.
活性污泥系统对环境pH值变化的响应   总被引:2,自引:0,他引:2  
为了考察活性污泥系统对环境pH值变化的响应,采用四个小试SBR反应器进行平行试验,研究了在不同原水pH值和不同瞬时混合后pH值条件下,系统污水处理效果以及污泥沉降性的变化.结果表明,由于许多生化反应(硝化、反硝化、放磷等)都消耗或产生碱度,以及水溶液中普遍存在的离子电离平衡,使活性污泥系统对环境pH值的变化具有很好的调...  相似文献   
7.
利用自行研制的直流脉冲发生装置产生的脉冲电磁场分别对生活污水和纯种大肠埃希氏菌液进行电磁处理 ,研究其对细菌的杀菌效果及机理 .实验表明电磁脉冲对生活污水及纯种菌液中的细菌都有明显的致死作用 .实验结果表明 ,停留时间、水流速度、线圈绕组、输出功率、脉冲频率对脉冲磁场的杀菌效果具有影响作用 ,在停留时间 1 2h ,输出功率 4 6 8W ,脉冲频率 6 5kHz ,水流速度 0 .3m s时 ,生活污水的细菌总数从 3.9× 1 0 7个 mL下降到 1 .5× 1 0 2 个 mL ,存活率达 1 0 - 5;大肠杆菌数从 2 .4× 1 0 6 个 mL下降到 3.6× 1 0 2 个 mL ,存活率为 1 0 - 4.在此条件下 ,四种质量浓度的纯种大肠埃希氏菌液经电磁处理后 ,其细菌的存活率均在 1 0 - 3~ 1 0 - 5.细菌细胞的扫描电镜照片表明电磁作用使细胞表面产生凹陷 ,孔洞 ,细胞质溶出现象 ,从而证实了感应电流杀菌作用机制  相似文献   
8.
以DO作为SBR法处理工业废水反应时间的控制参数   总被引:2,自引:0,他引:2  
根据有机物降解过程中COD与DO的相关关系,进行了以DO作为SBR法处理两种工业废水反应时间控制参数的研究,结果表明,两种工业废水的DO具有相同的变化规律,当有物达到难降解程度时,DO迅速大幅度升高,可以此作为停止暴气的控制信号,实现在线控制SBR反应时间的目的。所以提出以DO作为SBR反应时间的控制参数,对于保证出水水和减少运用费用有重要意义。  相似文献   
9.
葡萄糖为碳源的EBPR长期运行效果及聚磷菌的富集培养   总被引:1,自引:0,他引:1  
研究了连续运行364 d以葡萄糖为碳源的强化生物除磷(EBPR)系统,比较了3个不同运行阶段典型周期的运行状况,考察了厌氧段聚磷菌(PAOs)对有机底物的贮存转化,运用FISH技术分析了系统菌群结构变化.结果表明:随着运行时间的增加PAOs富集程度增高,第180天后反应器最高厌氧释磷量达到80 mg/L,出水磷浓度小于1 mg/L,以葡萄糖为碳源的EBPR系统可以长期高效稳定运行;与第1和第2阶段相比,第3阶段典型周期效果最佳,其厌氧释磷量达到79 mg/L,PO34--P去除率达到97.2%;葡萄糖先被发酵细菌分解为挥发性脂肪酸(VFA),PAOs吸收VFA合成聚羟基脂肪酸酯(PHA);荧光原位杂交技术分析发现,PAOs比例不断升高,第340天时比例为45.5%,说明以葡萄糖为碳源的EBPR系统可以富集高浓度的PAOs.  相似文献   
10.
接种污泥发酵耦合反硝化系统污泥,以剩余污泥发酵上清液中有机物作为反硝化过程电子供体,通过批次试验研究碳氮比()N-NO(/)COD(?x??)及p H对反硝化过程N-NO2?积累的影响。试验结果表明:在初始)N-NO(3??为30 mg/L,)N-NO(/)COD(?x??为1~3时,N-NO2?积累量和积累速率随)N-NO(/)COD(?x??增加明显升高,继续提高)N-NO(/)COD(?x??对N-NO2?积累影响很小,在反应过程中最大积累量达到(18.85±1.13)mg/L;p H对反硝化过程N-NO2?积累有明显影响,p H=7时N-NO2?积累速率最大,而N-NO2?积累量按p H顺序依次为:p H=9,6,8,7。另外,本试验考察的污泥发酵耦合反硝化系统污泥在反硝化过程中亚硝态氮积累率(wNAR)维持在78%~95%范围内,并且反应初始)N-NO(/)COD(?x??对其影响很小,可能是由于该系统的长期碳源电子供体有限,反硝化和发酵条件的引入导致反硝化菌合成硝态氮还原酶能力远远大于亚硝态氮还原酶的还原酶能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号