首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
针对嵌入式轨道应用于地铁环境时的刚度设计方法及合理取值开展研究。基于温克尔弹性地基梁理论,系统性地分析地铁用无扣件嵌入式轨道结构垂向、横向、抗倾覆、纵向及抗拔等各项刚度的组成及影响因素,并与传统扣件式轨道结构类比,形成各项刚度的设计、测试方法,给出取值建议。研究结果表明:嵌入式轨道垂、横向刚度可用钢轨基础弹性模量表征;纵向刚度与线路无缝化、限位结构以及高分子浇筑料施工锁定等有关;室内轨道结构样件测试验证了上述结果。建议:地铁用嵌入式轨道结构垂向钢轨单位长度基础弹性模量取32~64k N/mm,横向钢轨单位长度基础弹性模量取24.76~91.57 k N/mm,一般地段纵向刚度不小于每轨15 k N/m,小阻力地段约每轨6.4 k N/m,抗拔力应不小于每轨32 k N/m。  相似文献   

2.
基于梁-轨相互作用理论建立线-板-桥-墩空间耦合模型,研究了无砟轨道简支梁桥墩纵向刚度对钢轨附加力及断缝值的影响,给出了市域铁路简支梁桥墩纵向刚度限值的控制因素及合理值.结果表明:增大桥墩纵向刚度可减小钢轨附加总应力和梁-轨相对位移,不同于有砟轨道简支梁桥,市域铁路无砟轨道简支梁桥墩纵向刚度限值由钢轨强度控制;建议24,32,48 m简支梁桥上铺设U71Mn钢轨和常阻力扣件,温暖区域桥墩刚度限值分别取5,6和15 MN/m,寒冷区域取5,12和54 MN/m;64 m和80 m简支梁上铺设U75V钢轨和常阻力扣件,温暖区域刚度限值分别取22 MN/m和70 MN/m,寒冷区域取84 MN/m和240 MN/m;当寒冷区域80 m简支梁桥两侧梁端铺设小阻力扣件时,桥墩刚度限值可减小至84 MN/m.  相似文献   

3.
为研究多跨简支梁桥上不同无砟轨道对应无缝线路的受力特点,基于梁轨相互作用原理推导了可以考虑非线性阻力的多跨简支梁梁轨相互作用公式,并与有限元法进行了对比.分别建立了32 m标准跨度简支梁桥上不同无砟轨道模型,分析对比了实测温度荷载与制挠力耦合作用下各无砟轨道对应的无缝线路受力规律,同时探讨了简支梁跨数墩顶刚度以及扣件阻力等结构参数的影响.结果表明:对于32 m标准跨度简支梁,随着简支梁跨数的增加,钢轨附加应力最大值趋于稳定,且稳定时的最大值均小于规范限值,对于铺设无砟轨道的简支梁桥,其跨数不受钢轨附加应力限制;对于单元板式及双块式无砟轨道,当墩顶纵向刚度大于2 000 kN/cm时,墩顶刚度的变化对其钢轨附加应力的影响很小;多跨简支梁桥上无砟轨道不建议采用小阻力扣件.  相似文献   

4.
为研究小阻力扣件布置方案对重载铁路连续梁桥上无缝线路纵向力分布规律的影响,采用一种经过验证的梁轨相互作用分析方法,建立考虑相邻多跨简支梁结构的30 t轴重重载铁路(60+100+60)m连续梁桥-桥上无缝线路的一体化空间有限元模型.在此基础上,对多种小阻力扣件方案进行比选,探讨了扣件阻力、下部结构刚度、荷载模式、制动力率等设计参数的影响.研究结果表明:仅在连续梁范围内铺设小阻力扣件,可在保证钢轨应力和墩顶水平力均较小的同时减小钢轨断缝值;小阻力扣件纵向阻力取值对钢轨应力的影响可达11.2%;在连续梁范围内铺设小阻力扣件后,梁轨快速相对位移成为主要控制性指标,100 m跨重载连续梁桥制动墩顶纵向刚度限值为3000 k N/cm;荷载模式和制动力率对梁轨相对位移影响较大,建议通过试验进一步明确重载列车的制动力率取值.  相似文献   

5.
采用非线性弹簧模拟无缝线路纵向阻力,用带刚臂的梁单元模拟梁体,以黄韩侯铁路线上某156 m简支钢桁梁桥为例,分析相邻桥跨结构对大跨度简支钢桁梁桥上无缝线路纵向力分布规律的影响,提出相关参数的取值建议.研究表明:分析大跨简支钢桁梁桥上无缝线路纵向力时,两侧的多跨简支梁在下部结构纵向刚度相差较小的情况下可按6跨进行简化;与32 m标准跨度相比,相邻简支梁跨度为24 m时固定端伸缩力降低了9%,40 m时固定端伸缩力增大了7%;相邻桥跨为大跨连续梁时,钢桁梁固定端伸缩力增大了2.2倍,全桥伸缩压应力最大值增大了12%;在连续梁与钢桁梁之间布置1跨或2跨简支梁可大幅降低钢桁梁固定端的钢轨应力;在钢桁梁桥上设置小阻力扣件可使伸缩工况下钢桁梁的钢轨应力最大值和桥墩水平力显著减小.  相似文献   

6.
针对墩底沉降引起的桥上CRTSⅡ型板式无砟轨道纵向受力与变形问题,基于有限元法和梁-板-轨相互作用机理,建立多跨简支梁和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型,研究各墩底均匀沉降及差异沉降条件下无砟轨道和桥梁结构纵向力与位移分布规律.结果表明:各墩底发生均匀沉降时,两侧桥台及相邻桥墩顶为薄弱位置,两种桥上轨道结构纵向力与位移最大值及其变化趋势基本一致,且随沉降量的增加而线性增大;各墩底发生差异沉降时,沉降值突变的相邻桥墩顶为薄弱位置,该处轨道结构纵向力与位移随着沉降差值的增加而明显增大;需严格把控长大梁桥墩底桩基础的施工质量,避免各墩底发生差异沉降;研究成果可为桥上CRTSⅡ型板式无砟轨道无缝线路设计改进及工程建设提供参考.  相似文献   

7.
针对青藏铁路不冻泉地区桥上无缝线路梁轨纵向位移开展试验研究与理论分析。研究适合青藏高原恶劣气候环境的梁轨纵向位移自动采集存储系统,对青藏铁路不冻泉地区双片式T型混凝土简支梁桥的梁端纵向位移和梁轨纵向相对位移分别进行为期214 d和134 d的连续测试。对测试数据进行理论分析。研究结果表明:测试期间内,该地区梁体最大日温差为9.28℃;现行《铁路轨道设计规范》中关于有砟轨道混凝土梁体日温差的取值以及桥上无缝线路伸缩力与位移的计算方法适用于该地区的桥上无缝线路设计。  相似文献   

8.
为研究铁路桥梁徐变上拱对于梁轨相互作用的影响,分别建立了三跨连续梁桥及简支梁桥的梁轨相互作用有限元模型,分析了徐变上拱对桥上无缝线路的钢轨附加应力、扣件上拔力、扣件剪切力以及列车走行性的影响.结果表明:徐变上拱值主要影响扣件上拔力和行车舒适度,而对钢轨附加应力的影响可以忽略;徐变拱跨比相同的梁桥所导致的钢轨应力、扣件上拔力及扣件剪切力峰值基本一致;对于该研究的主跨125 m的连续梁桥和跨径30 m的简支梁桥而言,徐变拱跨比的建议限值分别为1/2 500和1/2 000.  相似文献   

9.
为了比较大跨度铁路连续梁桥与梁拱组合桥梁轨相互作用特点,以(82.9+172.0+82.9)m连续梁桥与梁拱组合桥为例,分别建立考虑钢轨-主梁-桥墩-基础、钢轨-拱肋-吊杆-主梁-桥墩-基础这2种桥梁梁轨系统一体化有限元模型,系统对比温度、活载、制动力、混凝土收缩徐变等作用下连续梁桥与梁拱组合桥上无缝线路纵向力的分布规律,并对线路纵向阻力、钢轨伸缩调节器设置等参数的影响进行探讨。研究结果表明:采用德国规范与中国无缝线路规范中的纵向阻力模型,连续梁桥钢轨伸缩力最大值与梁拱组合桥的钢轨伸缩力最大值相比分别大2.3%和2.0%;连续梁桥有载侧和无载侧钢轨最不利挠曲应力与梁拱组合桥的无载侧钢轨最不利挠曲应力相比均大67.8%;温度与断轨位置对断轨力影响显著;2类桥梁钢轨应力在同向列车制动与桥梁收缩徐变作用下变化规律与大小基本一致;对下部结构,连续梁桥对梁体升温敏感程度比连续梁拱桥的大,在挠曲工况下,两者墩顶水平力最大差为176.1 k N。  相似文献   

10.
无砟桥上无缝交叉渡线力学特性的影响因素   总被引:2,自引:0,他引:2  
基于有限元方法,以60 kg/m钢轨、12号固定辙叉、4 m间距无砟轨道交叉渡线为例,建立了无砟桥上无缝交叉渡线纵横向耦合的温度力及位移计算模型.主要研究了桥梁及钢轨的温度变化幅度、桥墩墩顶纵向水平刚度、桥梁形式及支座布置形式等因素对桥上无缝交叉渡线力学特性的影响,并对今后无砟桥上无缝交叉渡线的设计提出了建议.  相似文献   

11.
以黄韩侯铁路上某156m大跨度简支钢桁梁桥为背景,采用理想弹塑性道床阻力模型,建立了轨-梁-墩一体化空间有限元模型,对钢桁梁桥上钢轨伸缩力、挠曲力、制动力以及断轨力分布规律进行了分析,探讨了相邻简支梁支座布置、桥墩顶纵向刚度、小阻力扣件布置等设计参数对钢轨纵向力的影响.研究表明:钢轨伸缩力为主要控制性荷载;相邻简支梁宜采用与钢桁梁相同方向的支座布置方式;随墩顶刚度的增加,钢桁梁桥上钢轨伸缩力和挠曲力增大,制动力减小;在钢桁梁桥上采用小阻力扣件即可以减小约36%的钢轨伸缩力.  相似文献   

12.
运用梁轨相互作用原理,建立上承式拱桥上无缝线路断缝计算力学模型.以一座单线铁路上承式拱桥为例,分析桥梁结构、墩台刚度及股道数等因素对钢轨断缝的影响.结果表明:拱肋温差越大,钢轨断缝越大,断缝与拱肋温差近似呈线性关系;拱肋截面刚度越小、立柱墩刚度越大,钢轨断缝较大;断轨在桥上不同位置的钢轨断缝差别较大,在拱桥跨中附近断轨时,钢轨断缝达到最小;此外,小阻力扣件的铺设和桥上股道数均对断缝有不同程度的影响;采用公式法会低估钢轨断缝,建议采用梁轨相互作用法计算上承式拱桥上钢轨断缝.  相似文献   

13.
与普通简支梁桥和连续梁桥相比,千米级主跨斜拉桥上的无缝线路受力与变形更为复杂.在充分考虑梁轨间的相互作用原理基础上,建立了无缝线路-梁-索-塔-墩空间耦合有限元模型,分析了千米级主跨斜拉桥上无缝线路的受力与变形特性.结果表明:千米级主跨斜拉桥温度跨度大,梁体温度变化会导致产生较大的伸缩附加力;主塔与斜拉索温度变化对于伸缩附加力影响不大;相比于铁路荷载单独作用,公铁荷载共同作用会使桥上无缝线路挠曲附加力大幅增加,其引起的轨道不平顺值满足规范要求;桥上铺设常阻力或小阻力扣件时,钢轨强度和稳定性不能满足规范要求,需在主梁两端铺设钢轨伸缩调节器;由桥梁温度变化及制动荷载引起的伸缩总量近700mm,考虑其他不利因素的影响,建议选用±900mm及以上伸缩调节器结构.  相似文献   

14.
为研究温度梯度荷载作用下多跨简支梁桥上CRTS Ⅱ型板受力变形问题,基于有限元法建立了多跨简支梁桥上CRTS Ⅱ型板式无砟轨道无缝线路(Continuous Welded Rail,CWR)空间精细化有限元模型,分析了竖向、横向温度梯度荷载作用下轨道、桥梁结构纵向受力与变形特性.研究结果表明:竖向温梯荷载作用下,钢轨在桥梁两端的主端刺位置伸缩力与位移达到最大值;轨道板出现翘曲应力,其上下表面应力差随温度梯度增大而增大,轨道板竖向温度梯度为90℃/m时,上下表面应力差最大值较50℃/m时增加了44%.双向温梯荷载作用下,向阳侧桥梁纵向位移明显高于背阴侧,钢轨伸缩力略高于背阴侧;随着横向温度梯度的增大,阴阳两侧结构纵向位移差、相对位移差和应力差均呈现逐渐增大趋势.在高温差地区需重点关注轨道板因上下表面应力差引起的翘曲变形问题.研究成果可为桥上CRTS Ⅱ型板式无砟轨道无缝线路的设计、施工和维护提供理论依据.  相似文献   

15.
千米级以上超大跨径桥梁已逐步应用于高速铁路建设,但桥上无缝线路更加复杂的梁轨相互作用给安全运营带来了新的挑战.温度作用下千米级以上超大跨径桥梁空间变形大,可能对其上无缝线路造成影响.常规分析模型无法充分体现温度对千米级以上超大跨径桥上无缝线路的影响.因此,以超大跨径公铁两用悬索桥为例,建立无缝线路-超大跨径桥梁空间耦合模型,不考虑风、车荷载的影响,分析温度作用下桥梁空间变形引起的梁轨相互作用变化规律.研究结果表明:由温度引起的钢轨纵向力除传统的基本温度力、伸缩附加力外,还包括温度作用下桥梁挠曲引起梁轨相对位移而产生的新附加力—"温度挠曲力".该力导致了梁轨相对位移及钢轨纵向力均发生了不同于普通桥上无缝线路的变化.在超大跨径桥上无缝线路中不存在传统意义上的"固定区",为此提出了有关"实际锁定轨温"测试与应用的新方法.可为千米级以上超大跨径桥上无缝线路的设计、建造及养护维修提供参考.  相似文献   

16.
针对矩形空心-双薄壁组合桥墩纵向刚度的设计方法尚不完善的问题,提出一种基于列车-轨道-桥梁动力相互作用理论的矩形空心-双薄壁组合桥墩纵向刚度确定方法.首先,基于列车-轨道-桥梁动力相互作用理论建立考虑桥轨关系和轮轨关系的列车-轨道-桥梁动力相互作用模型,在此基础上完善钢轨多种附加应力的计算方法;然后,考虑桥墩刚度对扣件上拔力和墩顶纵向位移的影响,以重庆地铁实际工程为例,确定轨道桥矩形空心-双薄壁组合桥墩纵向刚度.研究表明:提出的组合桥墩纵向刚度研究方法可有效用于求解钢轨应力及确定桥墩合理纵向刚度;钢轨底部边缘动弯曲应力和温度应力未随桥墩纵向刚度而变化,而钢轨伸缩应力对桥墩刚度变化最为敏感;桥墩纵向刚度对扣件上拔力以及墩顶纵向位移均有明显影响;对于所研究的矩形空心-双薄壁组合桥墩,其墩底尺寸建议不小于7.4 m,此时刚构桥墩的合成线刚度为61.4 MN/m.  相似文献   

17.
无缝线路也叫长钢轨线路,就是把若干根标准长度的钢轨经焊接成为1000~2000m而铺设的铁路线路。所谓跨区间无缝线路,即轨条与轨条、轨条与道岔直接焊接,轨条之间直接传递纵向力和位移量。本文就跨区间无逢线路施工技术进行叙述,以期能与同行相互交流。  相似文献   

18.
张建  唐进锋  朱传勇  何晓敏 《甘肃科技》2007,23(7):136-138,20
文章以桥上无缝线路梁轨相互作用原理为基础,建立以轨道、桥梁、支座、墩台和基础为整体结构的附加纵向力计算有限元模型,依据"对号入座"法则编制了计算钢桁梁桥上无缝线路的程序。讨论了伸缩调节器设置与否以及设置位置的不同对纵向附加力的影响。  相似文献   

19.
以新建铁路成都至兰州线上某(36+112+36)m双线拱加劲连续梁桥为背景,采用理想弹塑性道床阻力模型,建立轨-梁-墩一体化的传统平面模型和空间梁格模型,对比分析2种计算模型中拱加劲连续梁桥上钢轨纵向附加力的分布规律.研究表明:梁格模型与平面模型计算所得的线路纵向力变化规律基本一致,但平面模型的计算结果偏于保守;平面模型无法准确反映不对称加载时多线轨道的空间受力特性;对于大跨度多线铁路桥而言,宜采用空间梁格模型对其上无缝线路进行检算.  相似文献   

20.
为探明高速铁路大跨度连续梁桥上CRTSII型板式无砟轨道断板工况下受力特性,基于梁轨相互作用原理,采用有限元软件MIDAS建立了钢轨-轨道板-底座板-梁体-桥墩空间一体化纵向力计算模型,选取跨径(60.75+3×100+60.75)m的沪昆客运专线长玉段涟水大跨连续梁桥工程实例,研究计算了断板工况下桥上各层轨道结构相对位移,以及纵向附加力的分布和传递规律.结果表明:连续梁右端处,轨道板和底座板最有可能断裂;断缝处钢轨附加拉应力最大,其值足以引起断轨;断缝处钢轨-轨道板相对位移较大,钢轨扣件将会进入塑性状态而被拉断;断缝处及连续梁固结机构处轨道板-底座板相对位移较大,位移量足以导致CA砂浆层与轨道板结合失效;断缝两侧固结机构处剪力钢筋承受附加力较大,剪力筋会被剪断;轨道结构超过70%的纵向反力由左右两侧端刺承担.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号