首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新型基因编辑技术CRISPR/Cas9系统研究现状   总被引:1,自引:0,他引:1  
规律成簇间隔短回文重复序列及其相关系统(clustered regularly interspaced short palindromic repeats/CRISPR associated,CRISPR/Cas system)是细菌和古细菌防御外来噬菌体、质粒或其他外源DNA侵染的获得性免疫系统.依据Cas蛋白种类和同源性,CRISPR/Cas系统被分为3类,其中,Ⅰ类和Ⅲ类需要多种Cas蛋白参与,而Ⅱ类系统,即CRISPR/Cas9组成简单,仅需Cas9蛋白参与即可.经过遗传工程改造后的CRISPR/Cas9已经作为一种新型的基因编辑工具被用于多种生物的基因组编辑.本文就CRISPR/Cas9系统的发现、结构组成、作用机制、研究现状、面临的困境及应用前景等几方面进行了总结.  相似文献   

2.
基因定点编辑技术包括基于胚胎干细胞及同源基因片段重组的基因打靶技术、锌指结构(ZFN)、类转录激活因子效应物(TALEN)以及CRISPR/Cas系统,CRISPR/Cas系统具有操作简单、突变率高、成本低,同时可针对多个基因等优点;该技术可进行定点修饰,如敲除、插入、替换等.目前CRISPR/Cas系统已成功应用到小鼠、人类细胞、线虫、果蝇、斑马鱼、拟南芥、水稻和猴等.文章将对基因修饰技术发展脉络做统一梳理,并将系统阐述CRISPR/Cas系统的原理、应用以及该技术的优缺点.  相似文献   

3.
目的:通过CRISPR/Cas9基因编辑技术和流式细胞术相结合,获得可编辑Plac9基因敲除的人胚肾细胞株(293T).方法:根据Plac9外显子设计了4个sgRNAs(S1,S2,S3,S4),分别将其与PX458载体连接,构建了PX458-S1(S2/S3/S4)载体.通过转染试剂lipo2000将表达载体分别转染至293T细胞中,并以流式细胞术对带绿色荧光蛋白标记的细胞进行单细胞分选,分选后的细胞培养一段时间后,用基因组测序和错配酶酶切进行筛选.从筛选好的细胞中提取蛋白,进行Western Blot检测敲除效率.结果:采用CRISPR/Cas9和流式细胞术结合技术成功构建了Plac9蛋白表达缺失的人胚肾细胞株.结论:该方法简便快捷、效率高,可广泛地用于编辑各种细胞和细胞功能研究.  相似文献   

4.
规律成簇间隔短回文重复序列(Clustered regularly interspaced short palindromic repeats,CRISPR)和CRISPR相关蛋白(CRISPR-associated proteins,Cas)组成的CRISPR/Cas系统是古细菌和细菌特有的抵御外源核酸入侵的适应性免疫机制.其中CRISPR/Cas9系统已经在动植物基因功能研究和模型构建等方面得到广泛的应用.另外,CRISPR/Cas系统在基因治疗和核酸分子检测领域的应用也是近年来研究的热点.本文主要对CRISPR/Cas系统的发现、组成和作用机制以及该系统的应用进行综述.  相似文献   

5.
目的:设计、构建并包装靶向c-myc基因的CRISPR/Cas9腺病毒;评估靶向c-myc基因的CRISPR/Cas9腺病毒系统对肝癌的抑制作用.方法:采用生物信息学网站设计靶向c-myc基因的gRNA,以GFP作为对照设计GFP gRNA;通过T7E1筛选出编辑效率高的gRNA并将筛选的gRNA构建CRISPR/Cas9腺病毒载体并包装腺病毒,通过分析细胞增殖、周期和凋亡及迁移能力的变化来评估靶向c-myc基因的CRISPR/Cas9腺病毒系统对肝癌的抑制作用.结果:成功设计、构建并包装靶向c-myc基因的CRISPR/Cas9腺病毒;靶向c-myc基因的CRISPR/Cas9腺病毒系统能够显著抑制Hepa1-6细胞的增殖和迁移、阻滞细胞周期进程,但对细胞凋亡无影响.结论:靶向c-myc基因的CRISPR/Cas9腺病毒系统可在细胞水平明显抑制肝癌细胞的生长.  相似文献   

6.
木本植物育种周期长、种质资源匮乏,已成为限制木本植物种质创新的主要因素。CRISPR/Cas系统是近年来发展起来的能够实现对基因组进行精准定点编辑的技术,具有操作简单、周期短、效率高等优点,可实现基因的敲除、插入、替换等目的,从而精确地引入目标性状。目前,该技术已在多种家畜、昆虫、作物中得到了成功应用,对大量性状进行了改良,实现了种质资源的原始创新,大大缩短了育种年限。CRISPR/Cas技术的产生为木本植物的遗传改良提供了契机。笔者对CRISPR/Cas技术在杨树(Populus spp.)、苹果(Malus spp.)、柑橘(Citrus spp.)、葡萄(Vitis vinifera)、木薯(Cassava spp.)等木本植物育种中的应用进行了总结,该技术实现了T0代木本植物优良基因型的固定,在生长、材性、抗病性、抗旱性等性状上得到了明显改善,加快了木本植物育种进程,提高了育种效率。但该技术在木本植物中的应用尚处于起步阶段,还存在脱靶率高、编辑效率低、纯合突变少等问题。基于此,对CRISPR/Cas技术在木本植物中的应用前景进行了展望,以期为木本植物基因功能研究及品种改良提供有益参考。  相似文献   

7.
哺乳动物黑色素的合成依赖于酪氨酸的氧化作用,而酪氨酸酶(Tyr)是催化酪氨酸氧化反应的关键酶,当外源Tyr基因整合进白毛色小鼠基因组中,会使它获得黑色素合成的能力,表现出与原来不同的毛色表型。为方便、快捷地获得Tyr基因整合的小鼠,构建了一个无启动子的pTyr-2A-DsRed同源重组质粒供体,选择Rosa26的第一个内含子作为外源基因整合的靶位点,设计了切割位点几乎一致的ZFN、TALEN和CRISPR/Cas9系统。通过流式对比分析C_2C_(12)细胞中红色荧光蛋白DsRed的表达水平,比较了3种基因组编辑工具介导的外源基因定点整合效率,结果发现CRISPR/Cas9的效率最高,在此基础上,利用CRISPR/Cas9将供体整合到小鼠胚胎干细胞中,筛选单细胞克隆进行囊胚腔注射和胚胎移植,获得一只存活的嵌合体小鼠,表现出白毛中夹杂黑毛的表型,表明整合到小鼠Rosa26的Tyr基因可以正常表达。  相似文献   

8.
CRISPR-Cas系统是新近在原核生物中发现的一种抵御外来DNA入侵的免疫机制,由一个成簇规则间隔的短回文重复序列(CRISPR)和附属的蛋白质(Cas)组成,广泛分布于真细菌和古菌中.CRISPR由重复序列及其间隔序列组成,间隔序列来自于过去的入侵DNA,并插入到细菌的CRISPR排列中.一旦出现新的入侵,CRISPR转录,其RNA经过加工后与Cas蛋白质组成一个核蛋白复合体,该复合体通过RNA与入侵DNA序列之间的互补配对,结合目标序列,最后Cas蛋白质将入侵DNA降解.此外,基于CRISPR系统中的Cas9蛋白,发展了一种新的基因组编辑技术,在不同的细胞中均能获得高效的基因定点打靶,展现出巨大的潜力.  相似文献   

9.
NO.1单细胞基因组测序 随着微流控技术、罕见细胞分离技术以及对单基因组破译能力的提高,单细胞基因组测序研究于2012年悄然崛起,并有望于201 3年获得重大突破. 多数的基因组测序是通过提取大量细胞中的DNA后进行的.为了获得足够的DNA进行测序,通常需要数以千计、甚至数以百万计的细胞.这种测序方法,忽略了细胞与细胞之间的差异.而这些差异对于控制基因表达、细胞行为和药物反应有可能是至关重要的.近年,科学家们发明了一种可以对一个细胞进行基因组测序的单细胞基因组测序技术,实现了从生命活动的最基本单位——细胞这个层次,去研究生物的生长、发育、生殖、遗传和变异等过程.如今,在微生物生态学、癌症基因组、法医学、微量诊断和遗传印记等研究中,单细胞基因组测序技术使其研究和检测更深入、更细致,从而带动基础科学新的发现,也将给人类对抗疾病、保障健康和提高生命寿命和质量带来很多新的机会.  相似文献   

10.
目的:为探究GLUT4基因在肺癌细胞中的功能及影响.方法:在GLUT4外显子上设计了4个sgRNAs(S1、S2、S3、S4),分别与PX458载体连接形成重组表达载体后,借助转染试剂lipo3000将表达载体转入生长态势良好的A549细胞中,再利用流式细胞仪分选技术对转入重组载体发出绿色荧光的细胞进行单细胞分选.利用基因组测序筛选突变株,提取突变株的RNA和蛋白,进行Real-time PCR及Western Blot检测敲减效率,并利用激光共聚焦显微术检测突变株葡萄糖摄取量的变化.结果:突变株细胞在mRNA及蛋白水平均表现出GLUT4基因敲减效果,并在葡萄糖摄取上表现出明显的降低趋势.结论:利用CRISPR/Cas9系统成功建立了GLUT4基因敲减A549细胞系.  相似文献   

11.
目前,基因编辑技术已被广泛用于生物医学研究,本研究利用AAV(Adeno-Associated Virus)递送CRISPR/Cas9系统,实现高效率的基因编辑,并对特定组织细胞中的基因编辑进行了初步探索.我们首先采用Rosa-mTmG转基因小鼠来研究CRISPR/Cas9在小鼠胚胎成纤维细胞(Mouse Embryonic Fibroblast,MEF)中的编辑效率;接着,我们构建了能够被AAV包装的SaCas9系统,并通过瞬转以及AAV介导递送的方式检测其基因编辑效率;最后,我们还构建了含有心肌特异启动子的cTNT-PX601-sgRNA以备后续研究.结果发现,与瞬转相比,AAV介导CMV-PX601-sgRNA在体外能够极大地提高细胞的基因编辑效率.另外,cTNT-PX601-sgRNA能够在心肌细胞中特异表达.我们的结果表明,利用AAV介导的CRISPR/Cas9系统在体外可以实现高效地基因编辑,为靶向修复基因缺陷疾病,特别是特定组织器官中的基因缺陷,提供了研究工具和实验依据.  相似文献   

12.
利用CRISPR/Cas9系统这一基于细菌核酸酶Cas9的新型基因编辑工具,可以在原核细胞和真核细胞中实现基因敲除的功能.首先使用CRISPR设计工具设计靶点,退火来制备sgRNA双链,用Bsm BⅠ酶切割gRNA质粒,构建Lenti CRISPRv2的重组质粒.通过U6启动子上的LKO1.5引物对每个菌落序列进行了测序验证,结果表明利用此新方法可以成功构建CRISPR/Cas9系统的Knock Out载体.  相似文献   

13.
大肠杆菌是分子生物学的重要研究对象,是生产氨基酸、有机酸和重组蛋白等物质的主要微生物.在分子生物实验中,常常不需要完整的大肠杆菌基因序列,这时如何截取所需要的基因序列就成了值得研究的问题. Red同源重组是大肠杆菌基因敲除的传统方法,主要利用自身的Rec A同源重组系统编码中Rec A和Rec BCD蛋白,介导DNA进行同源重组.几经技术革新,但该系统仍然存在很多不足.基因组编辑三大技术是TALEN、ZFN和CRISPR/Cas,其中的CRISPR/Cas技术更是当今世界上最具发展前景的革命性基因修饰技术.  相似文献   

14.
作为目前最新、最先进的基因编辑技术,CRISPR/Cas9系统为分子细胞生物学带来革命性发展,以它的简单高效、灵活性以及可实现DNA序列的定向突变而被广泛使用.斑马鱼的park2基因位于第13号染色体上,编码的Parkin蛋白是一个E3泛素连接酶.该基因在斑马鱼中的功能还不清楚.利用CRISPR/Cas9系统,首次在斑马鱼胚胎中实现了park2基因的大片段删除.由于斑马鱼在发育和疾病研究中有很大优势,实现park2基因敲除将有助于将来进一步研究该基因的功能.  相似文献   

15.
CRISPR/dCas9是以CRISPR/Cas9系统为基础发展而来的转录调控工具.本文综述了CRISPR/dCas9作为转录抑制工具(CRISPRi)和转录激活工具(CRISPRa)的发展及应用,总结了在细菌中应用CRISPR/dCas9系统时转录调控系统的选择、构建、靶位点的选择以及gRNA的设计等方面存在的问题,并对相关解决方法进行了展望.  相似文献   

16.
正12月底,《科学》杂志评选出了一年一度的十大科学突破技术。它们分别是哪些呢?让我们看看!1.追踪单细胞发育谱系从希波克拉底(古希腊医学之父)时代开始,生物学家就困惑于单细胞胚胎是如何发育成拥有多种器官和亿万细胞的成体。现在,通过结合多种技术,生物学家可在单细胞尺度上揭示各个基因何时启动并诱导细胞分化。首先,研究者从活体中分离出数千个完整细胞;之后,使用测序技术获得各个细胞的基因表达情况;最后,利用计算机或细胞标签,重建这些细胞的时间  相似文献   

17.
自人类基因组计划开展以来,越来越多生物的基因组序列得到了测定,基因的功能逐步得到鉴定.人们期望通过对基因表达的改变,来治疗人类疾病或提高生物的产量和品质.早期突变技术对基因的改变是不定向的,近年来,锌指核酸酶(ZFN)、转录激活子样效应因子核酸酶(TALEN)和CRISPR/Cas9等技术可对某个已知基因进行编辑.特别是CRISPR/Cas9技术,由于具有操作方便、效率高等优点,因此成为对基因进行定向操作的强有力工具.本文对几种基因编辑技术的原理和应用进行简要介绍和展望.  相似文献   

18.
突变体库是研究基因功能的重要工具。拟南芥种质资源库(ABRC)储藏了几乎涵盖所有基因的突变体材料,其中T-DNA插入突变体占绝大多数。然而,当在T-DNA插入突变体中进行遗传转化或与其他转基因报告系统进行杂交时容易引起转基因沉默,阻碍了相关研究的开展,甚至产生错误结论。甲基磺酸乙酯(Ethyl Methane Sulfonate, EMS)诱变和快中子诱变技术可获得非转基因突变体,但这两种方法均为随机诱变技术,需要通过基因定位来确认突变位点,无法实现基因靶向敲除。CRISPR/Cas9可以对目的基因进行靶向编辑,获得不携带转基因的突变体。拟南芥中尚无利用CRISPR/Cas9进行高通量突变体库构建的报道。本研究共设计900条sgRNAs靶向300个RNA通路相关基因,通过合成sgRNA混池文库、引入DsRed2荧光筛选标记、将DNA条形码和二代测序技术相结合,实现了对转基因阳性苗的高通量鉴定和分型,并对T2代具有发育缺陷的无荧光植株进行负向筛选,成功鉴定到了不含转基因的smd3-b和rlua4突变体。  相似文献   

19.
 2015年生命科学领域里最热门的话题自然是基因组编辑技术,尤其是被科学家称为“基因手术刀”的CRISPR(Clustered regularly interspersedshort palindromic repeats)基因组编辑技术。CRISPR的意思是规律成簇的、间隔短回文重复序列,源自于古细菌及细菌中的后天免疫系统,能帮助细菌有效抵抗病毒等入侵者造成的损伤。当重复序列与入侵病毒“遭遇”时,细菌就会产生一段与病毒序列相匹配的RNA,它被称为“向导RNA”,能够同负责切割DNA的Cas酶结合在一起,二者的职责就是发现并“隔离”病毒序列,从而阻断病毒复制。在细菌这套“防御”系统的基础上,科学家发展出一种新技术即CRISPR基因组编辑技术--通过“修饰”Cas酶与“向导RNA”,促使二者的联合体与他们想要在细胞基因组里“剔除”的某一DNA相匹配,从而“诱导”DNA进行修复。该技术是一种能够对基因组进行精确编辑的分子生物学利器,如同我们可以在电脑上对WORD文档中的文字按照我们的需要进行编辑一样。由于CRISPR基因组编辑技术不受物种限制,因此科学家已经成功在许多动植物中实现了基因编辑。从2012年开始,已有科学家将该技术应用于成人体细胞基因组中,从而为阻断遗传病延续以及治疗基因缺陷疾病打开了通道。至2013年初,有关编辑人类干细胞基因组技术方面的论文开始陆续问世,我国科学家也积极投入到相关研究中。  相似文献   

20.
摘要:2013 年 CRISPR( Clustered Regularly Interspaced Short Palindromic Repeats) / Cas( CRISPR-associated) 系统证实能够对人的细胞和其他真核细胞进行基因组编辑,现已广泛应用于生物医学领域。 本文对 CRISPR 在点突变小鼠构建中的应 用 进 行 概 述,为 单 向 导 RNA ( single guide RNA, sgRNA) 和 修 复 模 板 单 链 寡 聚 核 苷 酸 ( single-strand oligonucleotide,ssODN)的设计及体外转录、受精卵显微注射、子代鼠的鉴定等提供理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号