首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plasmid containing the promoter Act1, the coat protein (cp) gene of wheat yellow mosaic virus (WYMV) and the selectable bar gene, was delivered via particle bombardment, directly into immature embryos of a wheat cultivars. PCR and PCR-RFLP were employed to screen the existence of the cp gene in T0 and T1 generations. Seeds from the positive T1 plants were sowed in fields heavily contaminated with WYMV to detect their resistance. In field trial of virus infection, one of the transgenic wheat lines, P8-T2, exhibited highly disease-resistance. Western blot and RT-PCR analysis showed that the expression level of cp gene in the resistant transgenic line was reduced greatly compared to those susceptible to WYMV infection. This provided evidence to presume that the resistance obtained by the transgenic wheat line was stimulated by the mechanism of the virus induced gene silencing.  相似文献   

2.
The expression vector pBPC30, which carries the high molecular weight glutenin subunit (HMW-GS) 1Dx5 and 1Dy10 genes, was transferred into hexaploid winter wheat cv. Jinghua No. 1, Jing411 and Jingdong No. 6 explants of immature embryos and immature inflorescence by particle bombardment. A large number of resistant transgenic plants were obtained under the selection of herbicide bialaphos or phosphinothricin (PPT). Confirmed transgenic plants of To generation showed successful integration of HMW-GS genes and bar gene into the wheat genome. T1 generation of transgenic plants can resist 20--150 mg/L PPT.Protein analysis of T2 seed by SDS-PAGE showed that HMW-GS 1Dx5 and 1DylO genes were well expressed in offspring seed of transgenic lines by co-expression with or substitution of endogenous 1Dx2 or 1DylO. In one transgenic line, TG3-74, a new protein band between endogenous protein subunits 7 and 8 (marked as 8*) of glutenin appeared,but endogenous subunit 8 (encoded by 1By8 gene) was absent. Analysis of gluten rheological quality on seed proteins of 102 T3 plants showed that the sedimentation value of 5 transgenic lines (44.2149.0 mL) was remarkably improved,59.6%---64.3% higher than that of wild type Jinghua No. 1 and Jingdong No. 6, similar to bread wheat Cheyenne (48.0 mL). Analysis of dough rheological properties of transgenic lines showed that the dough stable time of 5 transgenic lines range from 16 to 30 min, whereas the dough stable time of wild type was only between 3--7 min. Our research suggests that introducing novel HMW-GS genes into wheat is an efficient way to improve its bread-making quality.  相似文献   

3.
OsNHX1 gene (Na^+/H^+ antiporter gene of Oryza sativa L.) was introduced into Poplar 84K with Agrobacterium tumefaciens-mediated transformation. PCR, Southern and Northern blot analysis showed that OsNHX1 gene was incorporated successfully into the genome of Poplar 84K and expressed in these transgenic plants. Salt tolerance test showed that three lines of transgenic plants grew normally in the presence of 2OO mmol/L NaCI, while the Na^+ content in the leaves of the transgenic plants grown at 2OO mmol/L NaCl was significantly higher than that in plants grown at 0mmol/L NaCI. The osmotic potential in the transgenic plants with high salinity treatment was lower than that of control plants. Our results demonstrate the potential use of these transgenic plants for agricultural use in saline soils.  相似文献   

4.
Transgenic tobacco plants carrying Cry1Ac, Cry1Ie or both genes were obtained. In the leaves of transgenic plants carrying both genes, the contents of Cry1Ac and Cry1Ie proteins were 0.173% and 0.131% of the total proteins, respectively. Cry1Ac protein content was 0.182% and Cry1Ie protein con- tent was 0.124% of the total proteins in the leaves of transgenic plants containing only one Bt gene. Fresh leaves of transgenic tobacco and wild-type plants were used for the insect bioassay against wild-type and Cry1Ac-resistant cotton bollworm (Helicoverpa armigera). The bioassay results showed that transgenic plants carrying both genes were significantly more toxic to wild-type and Cry1Ac-resistant cotton bollworm than those carrying Cry1Ac or Cry1Ie alone. This study indicates that the higher toxicity of transgenic tobacco plants carrying both genes is caused by the cooperative function of both Bt proteins, thus providing a potential way to delay the development of insect resis- tance to transgenic crops.  相似文献   

5.
6.
摘要:用农杆菌介导法将高亲和性钾离子转运体基因(HAK)和Bar基因转入5个优良玉米自交系7922、P138、265、238和271中,并对影响其遗传转化效率因素进行了优化.经PCR和RT-PCR检测证实获得阳性植株.除草剂涂抹实验证明Bar基因已经整合进玉米基因组.用不同浓度的盐溶液处理转基因植株和对照植株,发现转基因植株叶片中的K+含量、脯氨酸和叶绿素含量均高于未转化植株,而Na+含量低于未转化植株,表明HAK基因已经整合进玉米基因组,并通过过量表达提高了植株的耐盐性.  相似文献   

7.
Transgenic tobacco plants carrying CrylAc, Crylle or both genes were obtained. In the leaves of transgenic plants carrying both genes, the contents of CrylAc and Crylle proteins were 0.173% and 0.131% of the total proteins, respectively. CrylAc protein content was 0.182 % and Cry1 le protein content was 0.124% of the total proteins in the leaves of transgenic plants containing only one Bt gene. Fresh leaves of transgenic tobacco and wild-type plants were used for the insect bioassay against wild-type and Cry1Ac-resistant cotton bollworm (Helicoverpa armigera). The bioassay results showed that transgenic plants carrying both genes were significantly more toxic to wild-type and CrylAc-resistant cotton bollworm than those carrying CrylAc or Crylle alone. This study indicates that the higher toxicity of transgenic tobacco plants carrying both genes is caused by the cooperative function of both Bt proteins, thus providing a potential way to delay the development of insect resistance to transgenic crops.  相似文献   

8.
【目的】植物叶片早衰将影响作物产量和品质,研究叶片早衰机制对于培育耐早衰优良品种具有重要意义。【方法】以转BpGH3.5基因的白桦叶片早衰突变株(G4)、非转基因白桦(WT)及叶片正常的转基因白桦(G21)等为材料,测定其叶绿素含量、净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)等光合指标,测定苗高的时序变化规律。【结果】叶片早衰突变影响了叶片叶绿素的合成及积累,突变株的叶绿素相对含量(SPAD)均值为36.08,相对两个对照株系分别下降7.34%、7.48%。叶片早衰突变影响了白桦光合呼吸作用。突变株的净光合速率、气孔导度、蒸腾速率分别为WT野生株系的67.54%、64.44%、64.93%,胞间CO2浓度达到234.33 μmol/mol,显著高于G21对照株系( P<0.05)。突变株的当年高生长显著低于WT、G21 两个对照株系,当年高生长分别是WT、G21 两个对照株系的68.9%、85.0%。利用Logistic方程对3个参试株系当年苗高生长量的变化过程进行了拟合,其系数均高于0.98,同时,通过Logistic方程计算的生长参数揭示了早衰突变株高生长较两个对照株系低的原因是速生期苗高平均生长量(GR)、苗高日生长量的平均值(GD)等生长参数较低。【结论】转BpGH3.5基因的白桦发生了叶片早衰现象,使叶绿素提前降解,影响了光合呼吸作用,进而影响了苗高生长。  相似文献   

9.
OsNHX1 gene (Na+/H+ antiporter gene ofOryza sativa L.) was introduced into Poplar 84K withAgrobacterium tumefaciens- mediated transformation. PCR, Southern and Northern blot analysis showed thatOsNHX1 gene was incorporated successfully into the genome of Poplar 84K and expressed in these transgenic plants. Salt tolerance test showed that three lines of transgenic plants grew normally in the presence of 200 mmol/L NaCl, while the Na+ content in the leaves of the transgenic plants grown at 200 mmol/L NaCl was significantly higher than that in plants grown at 0 mmol/L NaCl. The osmotic potential in the transgenic plants with high salinity treatment was lower than that of control plants. Our results demonstrate the potential use of these transgenic plants for agricultural use in saline soils.  相似文献   

10.
为了获得耐盐性有所提高的转AlNHX1基因大豆后代材料,以已获得的转AlNHX1基因的6个株系中的3个株系后代为研究对象,通过分别对这3个株系转基因大豆各后代进行PCR分子检测并结合耐盐性鉴定,以分析外源基因在转基因大豆中遗传稳定性和耐盐性.结果表明:AlNHX1基因在转基因植株的后代中遗传;选取3个株系中部分阳性植株做耐盐性检测,结果表明:转基因大豆耐盐性状均好于野生型大豆.在150mmol/L NaCl胁迫下,转基因大豆叶片中维持了相对较高的K+/Na+比值,相对含水量较野生型提高了9%,而渗透势降低了39%,表明转基因大豆具有较好的吸水和保水能力;在盐胁迫下,超氧化物歧化酶(SOD)与过氧化物酶(POD)活性较野生型大豆分别提高了45%与69%.综上,通过耐盐筛选获得的转AlNHX1基因大豆具有较强的耐盐性.  相似文献   

11.
We isolated a clone, named Si69, from a foxtail millet immature seed cDNA library. The protein encoded by Si69 contains a conserved Wali7 (wheat aluminum induced protein 7) domain and shares high-level homology with aluminum-induced proteins from other species including rice and Arabidopsis. The Si69 gene presents as a single locus in foxtail millet genome and is globally expressed in all tissues examined. Its expression is up-regulated by aluminum. The sequence feature and expression pattern suggest that the Si69 gene is involved in aluminum tolerance or detoxification. To confirm its biological functions, Si69 controlled by the CaMV35S promoter was introduced into Arabidopsis. Transgenic plants did not show any visible morphological changes compared to wild-type plants under normal growth conditions. However, when treated with 20 or 50 μmol/L Aluminum (Al), the root apices of wild-type plants were heavily stained by hematoxylin, whereas those of Si69 transgenic plants were not stained when treated with 20 μmol/L Al and slightly stained when treated with 50 μmol/L Al. Scanning electron microscopy (SEM) results further demonstrated that the damage of the root apices was severer in wild-type plants than in transgenic plants. Inhibition of root growth and accumulation of malondialdehyde (MDA), an indicator of lipid peroxidation, were lower in transgenic plants than in wild-type plants. The results show that overexpression of Si69 may increase Al tolerance in transgenic plants, indicating that a series of Wali7-containing genes may play similar roles in Al tolerance/detoxification.  相似文献   

12.
王严  Gao  Xiaorong  Su  Qiao  An  Lijia 《高技术通讯(英文版)》2007,13(4):436-440
To generate transgenic plants capable of utilizing exogenous phytate,an Aspersgillus fumigatus phytase gene(fphyA) was constitutively expressed in tobacco and recombinant enzyme was secreted from plant roots into the rhizosphere using the signal sequence from tobacco calretieulin.After 40 days of plant growth in hydroponic media,phytase activities in leaves,stems,roots and growth media of transgenic plants were 8.6-fold,7.4-fold,12.6-fold and 14.3-fold higher than those of wild-type plants.Signifi-cant improvements in plant growth and phosphoms(P)utilization were observed in the transgenic plants.When phytate was supplied as the sole P source.45-day-old transgenic tobaccos accumulated 1.0-fold and 0.5-fold more shoot and root biomass than wild-type tobaccos.with a concomitant of 1.7-fold increase in total P concentration.These results indicate that secretive expression of the A.fumigatus phytase improves acquisition and use of P from phytate in plants.  相似文献   

13.
Stilbene, a kind of phytoalexin, plays an important role in resistance to fungal and bacterial infection in plants. It strongly inhibits the growth of fungi and sprout of spore. Stilbene synthase gene (Vst1) obtained from grapevine has been transferred into common spring wheat Jinghong 5 by using the biolistic transformation method. Five transgenic plants (T0) were obtained from the bombarded 2014 immature embryos. One immune plantlet and 3 plantlets with mid-resistance to powdery mildew were identified from the transgenic plants of T3 generation which came from 2 T0 transgenic plants.  相似文献   

14.
The cDNA of AtPLDa (Arabidopsis thaliana Phospholipase Da) gene was introduced into P. tomentosa (Populus tomentosa) under the control of the Cauliflower mosaic virus 35S promoter. Southern and Northern blot analyses suggested that the AtPLDa gene has been transferred into the P. tomentosa genome. No obvious morphological or developmental difference was observed between the transgenic and wild-type (WT) plants. Drought and salt tolerance and gene expression of seedlings of several transgenic lines and WT plants (control) were studied. The results showed that the rhizogenesis rate and the average root-length of transgenic lines were significantly higher than WT plants after mannitol and NaCI treatment under the same growth conditions. Northern blot analysis indicated that the higher the PLDa expression in the transgenic plants, the more tolerant the transgenic plants are to drought and salt treatment. Meanwhile, another group of these transgenic lines and WT plants (control) were treated with PEG6000 and NaCI separately. The contents of chlorophylls and the activities of some anti- oxidant enzymes (superoxide dismutase, guaiacol peroxidase and catalase) as well as malondialdehyde and relative electrical conductivity were analyzed. Altogether, our results demonstrated that overexpression of the PLDa gene can enhance the drought and salt tolerance in transgenic P. tomentosa plants.  相似文献   

15.
Previously, we isolated a vernalization-related gene, VER2, from winter wheat (Triticum aestivum L.) and its expression was restricted in the immature leaves of vernalized wheat seedlings. To further investigate the regulation of VER2 expression and the function of its promoter, we isolated a 41.7 kb genomic clone containing VER2 gene from atransformation-competent artificial chromosome (TAC) library of wheat (Triticum aestivum-Haynaldia villosa). The sequence analysis showed that there were eleven predicted genes in the TAC. The exons of gene 3 corresponded to the cDNA sequence of VER2 gene. Analysis of VER2 promoter structure showed that there were three small repeat sequences divided by two large repeat sequences. The putative response elements, such as abscisic acid response elements (ABRE), MeJA-response elements (Me-JARE), low-temperature response elements (LTR), endosperm expression elements, MYB binding sites and similar elements to GA response elements (GARE), were involved in the VER2 promoter region. Construct containing the VER2 promoter (-5895 to 73) driving GFP reporter gene was bombarded into vernalized or non-verualized immature leaves in wheat. The vernalized immature leaves showed bright green fluorescence after incubation for 24 h, however, the green fluorescence was not observed in the non-vernalization leaves under the same condition. These results suggested that vernalization was essential for the function of VER2 promoter in the immature leaves of winter wheat.  相似文献   

16.
Transgene directionally integrated into C-genome of Brassica napus   总被引:4,自引:0,他引:4  
Transgenic Brassica napus has been widely planted in Canada, the United States, and some other countries. In China, although the policy for genetically modified foods has not yet opened, genetically modified rape- seed oil as raw material for biodiesel of…  相似文献   

17.
The cry1Ah gene was one of novel insecticidal genes cloned from Bacillus thuringiensis isolate BT8. Two plant expression vectors containing cry1Ah gene were constructed. The first intron of maize ubiqutin1 gene was inserted between the maize Ubiquitin promoter and cry1Ah gene in one of the plant expressing vectors (pUUOAH). The two vectors were introduced into maize immature embryonic calli by microprojectile bombardment, and the reproductively plants were acquired. PCR and Southern blot analysis showed that foreign genes had been integrated into maize genome and inherited to the next generation stably. The ELISA assay to T1 and T2 generation plants showed that the expression of Cry1Ah protein in the construct containing the ubi1 intron (pUUOAH) was 20% higher than that of the intronless construct (pUOAH). Bioassay results showed that the transgenic maize harboring cry1Ah gene had high resistance to the Asian corn borers and the insecticidal activity of the transgenic maize containing the ubi1 intron was higher than that of the intronless construct. These results indicated that the maize ubi1 intron can enhance the expression of the Bt cry1Ah gene in transgenic maize efficiently  相似文献   

18.
基因枪法获得可育抗除草剂转基因小麦   总被引:3,自引:0,他引:3  
用基因枪法对两个春小麦品种进行了遗传转化,获得19株独立转化的,抗除草剂Basta的小麦植株,其中15株自交可育,PCR和DNA印迹检测证实了该基因在转化植株中的表达,转基因及其表达已遗传到子三代,在已检测的7个转基因后代中,有4个植株其抗除草剂性状以单位点,显性性状的孟德尔方式遗传。  相似文献   

19.
From pollen actin to crop male sterility   总被引:1,自引:0,他引:1  
Actin plays an important role in the life activity of animal and plant cells. Pollen cells have plenty of actin whose structure and characteristics are very similar to the animal actin. The nucleotide sequence and amino acid sequence of plant actin gene are very similar to those of the animal gene. The content of pollen actin from male sterile plants is much more lower than that from its maintainer plants. The expression of actin gene is organ-specific during the plant development. The expression quantity of actin gene in pollen is much more higher than those from root, stem and leaf. The expression plasmid of the anti-sense actin gene was constructed, transferred to the protoplasts of wheat and tomato to inhibit the expression of actin gene in pollen and thus the male sterile plants of wheat and tomato were obtained. The actin in pollens from the transgenic plants was reduced significantly, whereas the pistil was not affected. This study might pave a new way to breeding male sterile lines for the application of hybrid vigor of wheat and tomato.  相似文献   

20.
本文以野生型(WT)水稻(Oryza sativa)品种中花11(ZH-11)和利用转基因技术已经构建获得的抗坏血酸合成关键酶GLDH基因的上调(超表达)株系GO-2及下调(干涉)株系GI-2的离体叶片为实验材料,用甲基紫精(MV)高光诱导的光氧化胁迫处理,研究内源抗环血酸对水稻叶片抗光氧化能力的影响。MV高光处理后,GO-2水稻叶片的超氧阴离子和过氧化氢含量明显低于ZH-11和GI-2。水稻叶片的膜脂过氧化加剧,可溶性蛋白发生了降解,其中GI-2受到的影响最大。叶绿素荧光相关参数的变化体现了超表达的优势。结果显示抗坏血酸含量高的超表达株系GO-2具有更强的抗氧化胁迫能力,而干涉型株系GI-2的抗氧化胁迫能力最差。本实验说明了内源抗坏血酸能明显增强水稻抗氧化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号