首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
自养、异养和混养下小球藻的生长及生化成分   总被引:5,自引:0,他引:5  
对小球藻在自养、异养和混养条件下的生长状况及细胞的生化成分(如可溶性蛋白、可溶性糖、叶绿素及脂肪酸组成)进行了研究.结果表明:异养和混养培养的小球藻的生物量远大于自养时的生物量;异养和混养培养的小球藻的比生长速率分别是自养时的2.13倍和3倍;光照对混养条件下的细胞生长有影响,但光照强度为2.5klx和4.0klx时细胞生长的差别并不明显.尤其在稳定生长期;与自养生长相比,异养过程中小球藻的脂肪含量明显增加,可溶性蛋白和可溶性糖的含量则有不同程度的降低,叶绿素含量大大减少;异养有利于亚麻酸的积累;在混养条件下,光照使可溶性蛋白、可溶性糖和叶绿素的含量增加,其强度对细胞的生化成分有影响.  相似文献   

2.
【目的】研究小球藻在自养条件下和以乙酸为碳源的异养、混养条件下生长以及光合作用的变化。【方法】以小球藻Chlorella sorokiniana为研究对象,通过测定OD_(550)和光系统Ⅱ(PSⅡ)叶绿素荧光研究其生长情况和光合作用的变化。【结果】小球藻在初始接种浓度为5×10~6个/mL的条件下,异养和混养的生长速度显著快于自养,到达稳定期仅需1.5d,而自养生长需要9d;叶绿素荧光参数自养大于混养,而混养又大于异养,有效光量子产量混养比自养降低21.5%,异养比自养降低98.1%;混养的Rubisco酶基因mRNA表达量最高,分别是异养和自养的3.2倍和1.8倍。【结论】小球藻在混养条件下光系统仅受到微弱抑制,生长速度和最高细胞密度均高于其它营养方式,适合规模化培养。  相似文献   

3.
小球藻(Chlorella vulgaris)产油脂最佳培养条件的筛选   总被引:1,自引:0,他引:1  
以低温作为环境条件诱导小球藻(Chlorella vulgaris)产脂,采用正交试验的方法来研究不同水平下Mn,K,Mg和S各元素对小球藻生长及脂肪产量的影响.本实验C N-1比为41.2:1,pH值范围为7.4~7.5之间,培养温度为15℃,P浓度为0.2~0.4 mmol.L-1,Fe浓度为0.04 mmol.L-1,以自养生长型式培养,而培养基成份根据BG11培养基作为基础进行改良.根据实验结果显示,脂肪产量最高为实验编号10(64.59 mg(100 mL)-1,64.59%),即锰及镁在一定程度上能促进小球藻的生长,且脂肪产率更高.  相似文献   

4.
无菌条件下的小球藻培养条件优化   总被引:3,自引:0,他引:3  
在无菌培养条件下,对影响纯化小球藻(Chlorella sp.)生长的NaHCO3,KNO3,KH2PO4,VB1,VB12等主要营养因素进行了优化.实验结果表明微量元素对纯化小球藻的生长有极显著的影响,维生素对纯化小球藻的生长亦有一定的影响.通过五因素四水平正交实验,得到了以海水为基础的优化培养基配方:KNO3 0.5g/L、NaHCO3 0.2g/L、VB12 1.0g/L、KH2PO4 0.02g/L、VB1 0.3mg/L,并添加f/2微量元素.该优化配方有效地提高了纯化小球藻的生长速度和生物量产量.  相似文献   

5.
比较了蒽对自养条件下的蛋白核小球藻、普通小球藻和原始小球藻及异养条件下原始小球藻的毒性效应,结果表明,它们对蒽的耐受性大小趋势为:原始小球菌异养)〉蛋白核小球藻(自养)〉普通小球藻(自养)〉原始小球藻(自养),其EC60值(96h)分别为2.53,1.47,1.27,0.85mg/L。  相似文献   

6.
研究了锌、钼、钴、铜、锰、铁6种微量元素对转植酸酶基因小球藻生长的影响.通过单因子实验确定了此6种微量元素促进转基因小球藻生长及胞内植酸酶表达的浓度范围,通过正交实验确定了锌、钼、钴、铜、锰促进转植酸酶基因小球藻生长的最佳浓度,获转植酸酶基因小球藻最大生物量产量的浓度依次为0.10、0.015、0.01、0.015、0.8μmol/L;获转植酸酶基因小球藻最高植酸酶比活值的浓度依次为0.10、0、0.04、0.015、0.4μmol/L.利用微量元素优化配方培养转植酸酶基因小球藻,可使胞内植酸酶比活值显著提高,但微藻生物量产量有所下降.  相似文献   

7.
为了得到有利于小球藻生长的最佳培养基,采用单因子实验和正交实验方法,在无菌条件和开放培养条件下对小球藻的培养基进行优化和放大,并考察小球藻对氨氮和硝酸盐氮的脱氮效果.结果表明,在无菌条件下利于小球藻生长的培养基组成为:0.2 g/L(NH_2)_2CO,0.5 g/L NH_4Cl,0.75 g/L NaHCO_3,0.03 g/L KH_2PO_4,5 g/L葡萄糖,0.3 g/L MgSO_4·7H_2O,0.008 g/L FeSO_4·7H_2O.在此培养基中培养4 d小球藻的浓度可达2.15×10~8 CFU/mL,为优化前的26.7倍.在开放培养条件下,当葡萄糖质量浓度为0.3 g/L,其他成分与无菌条件相同时,小球藻细胞浓度可达9.9×10~7 CFU/mL,并在1 000 L的容器中得到成功放大.小球藻对氨氮和硝酸盐氮的绝对去除速率随着底物浓度的升高而增大,当底物质量浓度为1 000 mg/L时,小球藻对氨氮和硝酸盐氮的去除速率分别达到16.4 mg/(L·h)和17.8 mg/(L·h).  相似文献   

8.
以吸附率和生物量为指标,在考察单因素实验基础上,利用响应面法确定小球藻吸附Cd~(2+)的最优条件.通过分析得到:各因素对小球藻吸附Cd~(2+)均有显著性影响,影响顺序为c(Cd~(2+))pH培养温度.用回归方程预测小球藻吸附Cd~(2+)的最优条件为:温度29.14℃、pH=6.67、c(Cd~(2+)=30.74μmol/L,小球藻的生物量和吸附率分别达到0.71g/L、85.2%.  相似文献   

9.
为了在我国北方地区村镇用生活污水高效培养小球藻,对小球藻的生长环境(初始污水浓度、环境温度、光照强度和光照时间)进行了单因素和正交实验研究.结果表明:在单因素环境条件下,污水的初始污水浓度、环境温度、光照强度和光照时间对小球藻生长具有显著影响.最佳的初始污水浓度是将原生活污水稀释2倍,环境温度达到30 ℃,光照强度为12 000 Lux,光照时间为20 h.正交实验研究表明,生活污水培养小球藻的最优培养条件并非各环境因子最佳水平的简单叠加,而是受环境因子间耦合作用的控制,主导性环境因子是初始污水浓度和光照时间.将原生活污水稀释2倍、环境温度为30 ℃、光照强度为10 000 Lux、光照时间达16 h,此时的生活污水培养小球藻的效率最高.  相似文献   

10.
小球藻培养条件的研究   总被引:10,自引:2,他引:10  
对影响小球藻生长的NaHCO3、NaNO3、KH2PO4、维生素等4种主要营养因素进行了优化,获得了以海水为基础的优化培养基配方:NaHCO30.10g/L,NaNO30.225g/L,KH2PO40.005g/L,pH6.0.另外,适量添加土壤浸出液和维生素也会明显提高藻的产量.流加培养可以促进小球藻生物量的增加.  相似文献   

11.
在光照条件下,分别研究了氯化铵、尿素和硝酸钾3种氮源,以及吲哚乙酸(IAA)和吲哚丁酸(IBA)2种植物激素对小球藻生长及叶黄素含量的效应.结果表明,葡萄糖和硝酸钾分别作为唯一碳源和氮源可以支持小球藻快速持续生长;尿素作为唯一氮源时小球藻生长缓慢,而氯化铵作为唯一氮源时因使培养物中的pH快速降低而抑制了小球藻的进一步生长.与尿素和氯化铵相比,硝酸钾是促进小球藻生物合成叶黄素的最好氮源,小球藻细胞中的叶黄素含量可以达到0.85 mg/g.在葡萄糖为碳源和硝酸钾为氦源条件下,加入植物激素IAA、IBA非但不能明显促进小球藻的生长,反而明显抑制了小球藻对叶黄素的生物合成.  相似文献   

12.
小球藻的筛选和异养培养   总被引:14,自引:1,他引:14  
从北京清河筛选出了具有异养能力的一株藻类,经初步鉴定为小球藻.在异养批量培养条件下,研究了不同氮源和碳氮比对筛选小球藻生长的效应.当葡萄糖作为惟一碳源时,硝酸钾和尿素都可以分别作为惟一氮源支持小球藻快速持续生长,而氯化铵作为惟一氮源时因使培养物中的pH快速降低而抑制了小球藻的进一步生长.当葡萄糖和硝酸钾分别作为小球藻生长的惟一碳源和氮源时,在碳氮质量比从5到20范围内,小球藻的生长随碳氮质量比的升高而明显增加,最大OD680nm达到了73.8.  相似文献   

13.
小球藻基因工程选择标记研究   总被引:3,自引:0,他引:3  
研究了小球藻对10种常见抗生素:庆大霉素、新霉素、氨苄青霉素、卡那霉素、头孢霉素、链霉素、G418、潮霉素、Zeocin和氯霉素的敏感性,发现小球藻对庆大霉素、新霉素、氨苄青霉素、卡那霉素、头孢霉素和链霉素不敏感;对G418和潮霉素较敏感;对Zeocin和氯霉素最敏感.利用统计学的方法和原理,确定了G418、潮霉素、Zeocin和氯霉素在海水培养基和淡化10倍的培养基中对小球藻的半致死剂量和95%可信限.为筛选出小球藻基因工程藻株的选择试剂,建立其遗传转化系统奠定了基础.  相似文献   

14.
为提高小球藻培养的经济效益和高效资源化综合利用水葫芦,初步研究了水葫芦提取植物蛋白废液对小球藻生长、叶绿素和蛋白质含量的影响。研究结果表明,光照条件下,培养藻液中添加不超过6%体积的水葫芦废液,小球藻的生长速度及藻体叶绿素和蛋白质含量均随废液添加量的增加而提高,即使培养藻液中不添加任何营养元素而只添加1%~6%体积的废液,小球藻的生长速度及藻体叶绿素和蛋白质含量即可达到和超过基础营养液培养组的小球藻,说明水葫芦提取植物蛋白的废液可极大地提高小球藻培养的经济效益,甚至可完全替代营养盐的添加;但在无光条件下,添加废液对小球藻生长无效,说明未经处理的水葫芦废液尚不能作为小球藻异养培养的营养源。  相似文献   

15.
以深层发酵培养的虎奶菇(Pleurotus tuber-regium)菌丝体和发酵液为材料,提取胞内和胞外多糖,研究对藻类细胞的凝集作用.结果表明:胞内多糖使蛋白核小球藻(Chlorella pyrenoidosa)和捷克小球藻(Chlorella luteorividis)产生凝集的最小凝集质量浓度分别是23.3,186.4μg/mL,而胞外多糖使上述2种小球藻产生凝集的最小凝集质量浓度分别是3.3,211.3μg/mL,对海洋小球藻(Chlorella sp.)无凝集反应.  相似文献   

16.
为提高小球藻(Chlorella sp.)的生物量,须对f/2配方培养基进行响应面优化。首先须确定小球藻培养基的最佳pH值和盐度。在此基础上,利用Plackett-Burman设计方案筛选出影响小球藻生长的3个主要因素分别为NaHCO3、KNO3和维生素B12,然后通过 Box-Behnken 设计试验确定这3个主要因素的最佳质量浓度参数。结果表明,当培养基组成为:NaHCO3 0.93 g/L、MgSO4 0.40 g/L、KNO3 0.46 g/L、K2HPO4 0.020 g/L、维生素B1 0.60 mg/L、维生素B12 1.8 μg/L、生物素 2.0 μg/L时,小球藻经实验室培养72 h后的生物量达到4.5×107个/mL,较优化前提高了32.5%。  相似文献   

17.
固定化藻类对污水中磷的净化能力研究   总被引:2,自引:0,他引:2  
采用海藻酸钙凝胶包埋固定藻类,对人工污水进行静态模拟净化试验,研究了蛋白核小球藻、突变衣藻、鱼腥藻和双对栅藻在固定和悬浮状态下对污水中磷的净化效率以及藻类的生长特性。结果表明:固定化藻细胞比悬浮态藻细胞具有生长更趋于稳定、藻类的活性保持时间更长的优势。4种藻类中,小球藻和鱼腥藻在污水中的生长状况更好,较适宜采用海藻酸钙凝胶包埋固定化技术。在固定状态下,蛋白核小球藻、突变衣藻、鱼腥藻和双对栅藻对磷的去除率在第3天达到最大值,分别为39.8%、28.3%、33.0%和30.7%。因此,小球藻更适用于去除污水中的磷,是较为优良的除磷藻种。  相似文献   

18.
IncreasesinsolarUV Bradiation(280—315nm)reachingtheEarth’ssurfaceduetostrato sphericozonedepletionhaveraisedconcernsabout UV Bimpactonplants[1].Themarinephytoplank ton,whichisthebaseoftheaquaticfoodchain,is veryimportantonourplanetandproducesaboutthe samebiomassasallterrestrialplantstakentogether.Moreover,anychangestothesizeandcompositionof phytoplanktoncommunitieswilldirectlyaffectfood productionforhumansfrommarinesources.Another importantroleofmarinephytoplanktonisthatthe photosynthesis…  相似文献   

19.
In order to investigate the mechanisms of enhanced UV-B radiation on algae, the effects of UV-B radiation on the physiological and ultrastructural changes of Chlorella sp. were examined. The results showed that UV-B radiation could inhibit the growth and photosynthesis of microalgae. UV-B radiation at lower doses increased the photosynthetic pigment (chlorophyll a (Chla) and carotenoid (Car)) contents, while at higher doses of UV-B radiation Chla and Car contents were decreased. The ultrastructure of Chlorella sp. without exposure to UV-B showed that the thylakoid lamellae were clear and regular, the stroma of its chloroplast was apparent and clear. The globules with photosynthetic pigments and the cristae of mitochondria were clearly seen. After exposure to UV-B radiation at dose of 2.88 kJm2, the thylakoid lamellae of Chlorella sp. were lost and dissolved, the globules which contained photosynthetic pigments in chloroplast were bleached; some mitochondria cristae were dissolved; slight plasmolysis was found in some Chlorella sp. cells. After exposure to 5.76 kJm2 UV-B radiation, the thylakoid was in disarray and disintegration, plasmolysis was found in most cells, and the cell wall was broken and began to fall out. Many blank areas were observed in cells, mitochondria were seriously deformed and most of the mitochondria cristae were dissolved. Also, globules containing photosynthetic pigments in chloroplast were bleached and some empty globules were found in chloroplast. Therefore, UV-B radiation could damage cell structure of Chlorella sp., and this damage increased with the dose of UV-B radiation they exposed to.  相似文献   

20.
Tetraselmis sp.- 1 is a new microalgae strain constructed by cell fusion technique. In this paper, the growth characteristics of Tetraselmis sp.-1 under different culture conditions are investigated. The growth kinetic models are obtained, the assimilation of C and NH4^ is investigated and the assimilation efficiency of Tetraselmis sp.-1 under different culture conditions is calculated. The results show that different cul-ture conditions do not have obvious influence on carbon ahsorbance, but have significant influence on ni-trogen absorhance, C:N is maximum under heterotrophie condition, while minimum under phototrophic condition. The assimilation efficiency (η) of Tetraselmis sp.-1 has the highest value in heterotrophic condition and largely higher than those in phototrophic and mixotrophic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号