首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
利用多相稀土催化臭氧氧化法对浓度为200 mg.L-1的1 L模拟印染废水进行了降解实验。以稀土催化剂投加量、温度、反应时间及pH值为影响因素,以COD去除率为考察指标来优化实验参数。结果表明:该工艺的最佳反应条件为pH=2,稀土催化剂投加量为5 g,反应时间为60 min,温度为60℃。该方法应用于废水处理,效果较好。  相似文献   

2.
比较了单独臭氧氧化、MnO_2催化剂吸附和MnO_2催化臭氧氧化3个体系对模拟草酸废水COD的去除效果,考察催化剂投加量对COD去除率的影响,并建立和验证了草酸氧化降解中的独立反应式.实验结果表明:单独臭氧氧化、MnO_2催化剂吸附和MnO_2催化臭氧氧化3个体系对模拟草酸废水COD的去除率分别为4.94%、20.83%和44.44%.MnO_2催化剂最佳投加量为0.500 g/L时,COD(草酸初始质量浓度500 mg/L,初始COD质量浓度89 mg/L,反应时间1 h)的去除率高达85.87%,由于MnO_2催化O_3产生·OH,MnO_2/O_3体系对模拟草酸废水COD的去除率明显提高.依据化学计量矩阵方法,验证并确立了草酸氧化降解过程的独立反应式.动力学理论计算和实验结果均表明,MnO_2催化臭氧氧化模拟草酸废水COD的降解过程符合准一级动力学方程(R~20.9).  相似文献   

3.
费托合成废水COD高达40~60 g/L,pH低至2~3,必须采用化学方法进行预处理才能有效续接生物处理方法。本研究利用氧化铜对模拟费托合成废水进行臭氧催化氧化降解实验,考察单独臭氧氧化、催化臭氧氧化、催化剂投加量、初始COD对模拟费托合成废水COD去除率的影响,并对COD的降解动力学进行分析。实验结果表明:对于COD的定量分析,与分光光度法相比,重铬酸钾滴定法测定COD的精确性比较高;单独氧化铜吸附和单独臭氧氧化对模拟废水COD的去除率为20%~30%;采用氧化铜和臭氧组合工艺,对模拟费托合成废水COD的去除率较高。当COD初始值为1 000 mg/L时,氧化铜投加量为1 g/L,反应120 min后对模拟费托合成废水的COD去除率达到76.62%;随着初始COD浓度的提高,COD的绝对降解量也成比例逐渐增大。CuO/O_3体系氧化机制分析表明,·OH对模拟费托合成废水中小分子有机酸醇的去除发挥了主要作用。动力学分析结果表明,采用氧化铜催化臭氧氧化工艺,模拟费托合成废水COD的降解过程符合准一级动力学方程,相关性系数高达0.97以上。  相似文献   

4.
采用金属镁和污泥炭制备出镁基负载污泥炭材料并被作为臭氧催化剂,以偶氮染料橙黄II废水作为目标污染物,探究了催化剂投加量等因素对橙黄II降解率的影响。结果表明:使用体积为100 mL的橙黄II废水,在污染物橙黄II初始浓度为100mg/L,向水中通入的臭氧量为500mg/h,加入镁基负载率为5%的催化剂0.5 g,反应温度为25℃,废水pH为5时,反应12 min时去除率达99%。镁基催化臭氧氧化对橙黄II的去除效果较单独臭氧高,镁基负载污泥炭的存在,增加了臭氧与催化剂的接触,同时激发了臭氧分解产生的羟基自由基,从而促进废水中污染物的快速降解,为臭氧氧化染料废水提供了有效催化材料。  相似文献   

5.
酸性颜料废水采用"物理、微电解及生物"组合工艺处理后,出水水质中苯胺和色度仍无法满足CJ 343—2010《污水排入城镇下水道水质标准》的要求,故采用臭氧氧化法对其进行深度处理.实验研究了废水pH、臭氧投加速率、反应温度以及苯胺质量浓度对臭氧氧化该废水的影响.结果表明:臭氧氧化的最佳工艺条件为pH=5、反应温度298.15K、臭氧投加速率0.92mg/(L·min),反应13min后色度由100降至40,苯胺由25mg/L左右能稳定降到2mg/L以下,出水水质满足排放标准.同时,对臭氧降解苯胺进行动力学拟合,其结果符合一级动力学方程.  相似文献   

6.
MOFs作为一种新型催化材料正成为环境领域的研究热点。本论文选取MOFs中MIL-100(Fe)、MIL-100(Fe)@MIP活化过硫酸钠(PS)产生硫酸根自由基(SO4- .)深度处理造纸废水二级生化出水,研究常温下初始pH值、催化剂用量和PS投加量等因素对废水COD去除率的影响,并采用响应曲面法分析多因素对COD氧化降解效果的影响。结果表明MOFs活化PS高级氧化体系深度处理造纸废水最佳的活化条件为:PS:COD=12:1、催化剂用量2 g/L、体系的pH值为6,可以实现32%的COD去除率,响应曲面分析实验表明各影响因素对于降解效果的贡献顺序是:PS投加量>pH值> MIL-100(Fe)用量。  相似文献   

7.
通过尿素水热共沉淀法制备了一种锌镁铝类水滑石(LDHs),将其煅烧制得焙烧态锌镁铝类水滑石(LDOs),使用鼓泡搅拌反应器,以吡啶降解率和出水化学需氧量(COD)为评价指标研究了LDOs在臭氧氧化降解吡啶中的催化潜力,并分析了其催化臭氧氧化动力学。结果表明,与单独臭氧氧化相比,LDOs催化臭氧氧化可显著提升对吡啶的降解效果。对于初始质量浓度为300 mg/L的吡啶废水,在反应时间为40 min、催化剂用量为0.6 g/L和初始pH为10的条件下,吡啶降解率和出水COD可分别达到96.9%和71.7 mg/L,并且初始吡啶的质量浓度越低,降解速率越快。此外,LDOs还表现出优异的催化稳定性。单独臭氧和催化臭氧氧化降解吡啶的过程都近似符合伪二级反应动力学模型,同时结果表明·OH是LDOs催化臭氧氧化降解吡啶的主要自由基。吡啶的主要降解产物可能为N-甲基乙酰胺或N,N-二甲基甲酰胺有机物以及硝酸根离子、二氧化碳和水等小分子无机化合物。  相似文献   

8.
采用催化臭氧-絮凝联用工艺处理焦化废水生化尾水,寻求最优处理效果,探究废水中溶解性有机污染物的特征和降解过程.通过自主设计的分体式流化床催化臭氧装置对废水进行处理,结果表明,在30%体积比的催化剂投加量、3 L/min的臭氧流量以及700 mg/L的絮凝剂投加量这一最佳反应条件下,焦化废水生化尾水的COD去除率为83....  相似文献   

9.
为了研究微气泡臭氧氧化技术处理废水的影响因素,采用微气泡臭氧氧化技术处理酸性大红3R废水,考察臭氧投加量、酸性大红3R废水初始浓度和投加活性炭对微气泡臭氧氧化过程中脱色率、TOC去除率、pH值以及臭氧利用率的影响。结果表明,提高臭氧投加量或降低酸性大红3R废水的初始浓度,酸性大红3R废水的脱色速率和TOC去除速率均有所上升,但臭氧利用率下降。煤质活性炭对微气泡臭氧氧化具有较强的催化活性,能够显著提高酸性大红3R废水的脱色速率和TOC去除速率。臭氧投加量为48.3 mg/min、酸性大红3R废水的初始质量浓度为100mg/L时,处理效果较好。此条件下,处理30min时脱色率达到100%,处理120min时TOC去除率达到78.0%,TOC去除表观反应速率常数为0.015min~(-1),臭氧利用率始终高于99%。而投加5g/L煤质活性炭后,处理15 min后脱色率达到100%,处理120 min时TOC去除率可达到91.2%,TOC去除表观反应速率常数提高至0.037min~(-1)。处理过程中出现中间产物小分子有机酸的积累并继续氧化降解,使得废水的pH值呈现先下降后升高的趋势。可见,对微气泡臭氧氧化影响因素进行优化,可提高污染物去除速率及臭氧利用率,显著改善处理性能。  相似文献   

10.
采用催化臭氧化工艺处理含藻毒素污水,分别用直接代入法和微分法,研究常见金属氧化物在催化剂作用下,该工艺对污水MC-LR和COD降解的反应动力学.直接代入法研究结果表明:采用催化臭氧化工艺,MC-LR降解基本符合准二级反应动力学,COD降解基本符合准一级反应动力学.动力学微分法研究验证表明以上结论成立.温度、催化剂投加量与pH值大小等试验因素均能影响该工艺的降解速率.试验表明:温度对该工艺的影响较小,各温度下降解速率较接近;增加催化剂投加量使该工艺处理性能提高,降解速率加快;pH值对该工艺处理性能影响显著,且碱性环境对该工艺性能的抑制使降解速率显著降低.  相似文献   

11.
研究了Cu/r-Al2O3单组分催化剂和Ni-Zn/r-Al2O3双组分催化剂两种催化氧化体系.通过对废水pH、反应时间、ClO2投加量、催化剂投加量、初始浓度等工艺条件的考察,确定Ni-Zn/r-Al2O3催化氧化处理氨基C酸染料中间体模拟废水的最佳工艺条件:初始pH,ClO2投加量10 mL,催化剂投加量3.0 g,反应20 min.在该条件下,COD和浓度去除率分别为65.2%和86.5%,为该工艺处理氨基C酸工业废水提供了实验依据.  相似文献   

12.
从反应动力学及影响因素角度系统地探讨臭氧对糖精(SAC)的降解效果.结果表明:SAC的臭氧氧化降解反应符合拟一级动力学模型,温度为20℃,pH为7,SAC初始质量浓度为20 mg/L,臭氧投加量为7.9 mg/L条件下,60 min后SAC完全降解,总有机碳(TOC)去除率为82.34%.臭氧投加量增加有利于SAC的降解,但臭氧的利用效率降低;SAC初始质量浓度越高,反应速率越慢,但降解效果受臭氧投加量的限制;pH值由酸性升高至微碱性,反应速率大幅上升;反应温度由10℃升至30℃,降解速率提高164%;水中常见阴离子对SAC降解有一定抑制作用,其中HCO_3~-的抑制作用最明显,随后是Cl-和SO_4~(2-),且随着HCO_3~-浓度的增加而增加.SAC的臭氧氧化降解遵循·OH氧化的机理.  相似文献   

13.
以垃圾渗滤液膜滤浓缩液混沉出水为研究对象,制备硅藻土负载纳米Fe3O4作为催化剂催化臭氧处理浓缩液.考察溶液初始pH值、臭氧体积流量和催化剂投加量对处理效率的影响.结果表明:在溶液初始pH值为7,臭氧体积流量为1.0 L·min-1,催化剂投加量为0.8 g·L-1,反应时间为90 min时,化学需氧量(COD)和UV254去除率分别为67.8%和86.3%.对进出水进行三维荧光光谱(3D-EEM)和气相色谱-质谱联用(GC-MS)分析的结果表明:经催化臭氧氧化处理以后,浓缩液中的腐殖酸、富里酸和色氨酸等难降解物质大幅度减少;烷烃类、酚类和杂环类物质质量分数下降,烷烃类衍生物质量分数上升;硅藻土负载纳米Fe3O4催化臭氧对于浓缩液有着较好的处理效果.  相似文献   

14.
采用浸渍法制备Cu/人造沸石催化剂并研究其在煤化工废水的催化臭氧氧化降解性能.研究煅烧温度和Cu(NO3)2浸渍浓度以及废水催化反应工况条件(pH、O3发生量、催化剂投加量)对废水处理效果的影响,并得出催化剂的最佳制备条件.通过投加叔丁醇研究催化臭氧氧化对煤化工废水的降解机制,并对最佳工况条件下处理的水样进行紫外光谱分...  相似文献   

15.
以土霉素废水处理站二级出水为研究对象,二氧化氯(ClO2)为氧化剂,以自制活性炭负载铜氧化物(CuOx-AC)催化剂进行ClO2催化氧化试验研究。试验结果表明,ClO2催化氧化最佳反应条件为初始反应pH值为7.0、ClO2投加量为0.24g/L(折纯,质量浓度)、催化剂投加量为50g/L(质量浓度)和反应时间为30min。在此条件下,废水COD的质量浓度由472.7~523.4mg/L降至301.2~340.1mg/L,COD去除率在35%左右,但废水B/C值由0.04~0.07提高至0.21~0.24,可生化性显著提高,为进一步采取生化处理工艺实现废水达标排放奠定了基础。  相似文献   

16.
张燕华  葛建新 《科技信息》2012,(21):242-243
采用Fenton化学氧化法对造纸废水进行深度处理,考察了H2O2和Fe2+浓度、pH、反应时间等因素对COD去除率的影响。在H2O2(3%)投加量为13.33mL/L,FeSO4.7H2O投量为0.9g/L,pH为5,反应15min后静置5min的条件下,初始COD为290mg/L,色度为50倍的造纸生化出水的COD去除率可达到72%。结果表明,Fenton化学氧化法深度处理该废水可以取到很好的效果。  相似文献   

17.
用浸渍法在活性炭上负载铈制备催化剂(Ce/AC),并用XRD和SEM对其进行了表征.考察了Ce负载量、催化剂投加量对Ce/AC催化臭氧氧化降解邻苯二甲酸二甲酯(DMP)的影响.结果表明,Ce/AC催化臭氧氧化降解DMP的优化参数是催化剂投加量1.5 g/L,Ce的负载量0.2 %.在优化条件下,Ce/AC加入有利于催化臭氧氧化DMP过程中TOC的去除.质量浓度30 mg/L(pH=5.0)DMP反应60 min后的TOC去除率由以AC为催化剂的48 %提高到68 %,而单独臭氧氧化过程中TOC去除率仅有22 %.  相似文献   

18.
以模拟染料废水甲基橙(MO)溶液为目标物,研究了Fe2+、Fe3+均相催化臭氧氧化及负载型铁氧化物非均相催化臭氧氧化对MO的去除特性,并探讨了在非均相催化剂活性炭负载Fe2O3(Fe2O3/AC)、活性氧化铝负载Fe2O3(Fe2O3/Al2O3)催化臭氧氧化体系中pH值、催化剂投加浓度、臭氧浓度、MO初始浓度等工艺参数的作用规律.结果表明,Fe2+、Fe3+、Fe2O3/AC、Fe2O3/Al2O3的加入均能提高MO的脱色率和COD去除率,且Fe2O3/AC、Fe2O3/Al2O3的催化效果更为显著;当Fe2O3/AC、Fe2O3/Al2O3的投加浓度为1.0 g/L,臭氧浓度为15.0 mg/L,MO初始浓度为25.0 mg/L、pH值为5.0时,30 min时Fe2O3/AC、Fe2O3/Al2O3催化臭氧体系降解MO的脱色率和COD去除率分别为89.26%、48.45%和80.34%、38.41%.  相似文献   

19.
以废弃向日葵秸秆为原料,采用机械混合法制备了多元稀土/生物质炭复合催化剂,用空气作为氧化剂催化氧化处理模拟印染废水亚甲基蓝.在单因素实验的基础上,采用Box-Beknhen实验设计,以亚甲基蓝脱色率和COD去除率为响应值,对影响催化氧化法最重要的4个因素,即催化剂投加浓度、曝气量、温度及pH进行优化.通过对二次多项式方程求解得知:复合催化剂的投加浓度为8.67g/L、曝气量2.5L/min、温度21℃、pH值为12时,亚甲基蓝脱色率的预测值和实验值分别为100.00%、99.61%;投加浓度7.33g/L、曝气量0.64L/min、温度30℃、pH值为10时,亚甲基蓝COD去除率的预测值和实验值分别为77.65%、75.81%.理论值与实际值非常接近,说明建立的模型合理可行.  相似文献   

20.
采用Fenton氧化的方法对湿法腈纶废水二级生化出水进行深度氧化处理.通过单因素实验考察了Fenton试剂投加量、初始pH值及反应时间对该废水处理效果的影响.研究表明,ρH2O2为300mg/L,ρFe2+为300 mg/L,反应初始pH值为3.0,反应时间为120 min时,Fenton氧化反应对COD达到最大去除率57%.另外,通过FT-IR和三维荧光光谱分析探讨了该废水有机污染物在Fenton氧化过程中的去除规律.结果表明,生化出水中某些难降解芳香性物质可以被Fenton试剂氧化分解,废水的可生化性得到提升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号