首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
比较了单独臭氧氧化、MnO_2催化剂吸附和MnO_2催化臭氧氧化3个体系对模拟草酸废水COD的去除效果,考察催化剂投加量对COD去除率的影响,并建立和验证了草酸氧化降解中的独立反应式.实验结果表明:单独臭氧氧化、MnO_2催化剂吸附和MnO_2催化臭氧氧化3个体系对模拟草酸废水COD的去除率分别为4.94%、20.83%和44.44%.MnO_2催化剂最佳投加量为0.500 g/L时,COD(草酸初始质量浓度500 mg/L,初始COD质量浓度89 mg/L,反应时间1 h)的去除率高达85.87%,由于MnO_2催化O_3产生·OH,MnO_2/O_3体系对模拟草酸废水COD的去除率明显提高.依据化学计量矩阵方法,验证并确立了草酸氧化降解过程的独立反应式.动力学理论计算和实验结果均表明,MnO_2催化臭氧氧化模拟草酸废水COD的降解过程符合准一级动力学方程(R~20.9).  相似文献   

2.
应用制备的活性炭(AC)负载活性组分催化剂催化臭氧处理丁香酚模拟废水,通过扫描电镜、X-射线衍射仪和比表面积分析仪对制备的催化剂特性进行表征,考察了AC负载活性组分的种类和初始pH值、负载量、催化剂加入量对催化臭氧氧化降解丁香酚模拟废水过程中COD_(Cr)(重铬酸盐指数)去除效果的影响,并对降解过程中COD_(Cr)的去除反应动力学进行研究.结果表明:AC表面成功负载了活性组分Fe_2O_3、CuO/Cu_2O、CeO_2、NiO,制备的催化剂(Fe/AC、Cu/AC、Ce/AC、Ni/AC)具有明显的催化活性,显著提高了臭氧氧化降解丁香酚模拟废水过程中COD_(Cr)的去除效果,催化活性从大到小依次为Fe/ACCe/AC Cu/AC Ni/AC;制备的Fe/AC具有最高的催化活性,在pH值为11、负载量为3%、Fe/AC加入量为0.3g/L条件下,反应60 min后COD_(Cr)去除率达到88. 90%,分别比AC催化臭氧处理和单独臭氧处理提高了21. 13%和29. 95%.动力学分析表明,臭氧氧化、AC、Fe/AC、Ce/AC、Cu/AC、Ni/AC催化臭氧氧化处理丁香酚模拟废水过程中COD_(Cr)的降解符合表观二级动力学规律,活性炭负载的活性组分有效提高了反应的动力学速率.  相似文献   

3.
为了考察臭氧催化氧化深度处理工艺对造纸废水的处理效果,采用臭氧单独氧化、O3/H2O2、O3/CeO2及O3/AC技术,考察其对水中UV254、COD的去除效果,同时分析了H2O2投加量对O3/H2O2氧化造纸废水效果的影响.实验结果表明,臭氧氧化具有很好的脱色及氧化水中UV254的效果;在本试验条件下,原水经过臭氧氧化10 min便可以完全褪去,UV254去除率最高可达58%左右;在O3/H2O2深度处理过程中,增加H2O2投加量只是略微提高了UV254去除率,但COD去除率反而降低.所以,在臭氧氧化某些造纸废水时,并不需要采用臭氧催化氧化技术,单独臭氧氧化便可以达到较理想效果.  相似文献   

4.
用浸渍法在活性炭上负载铈制备催化剂(Ce/AC),并用XRD和SEM对其进行了表征.考察了Ce负载量、催化剂投加量对Ce/AC催化臭氧氧化降解邻苯二甲酸二甲酯(DMP)的影响.结果表明,Ce/AC催化臭氧氧化降解DMP的优化参数是催化剂投加量1.5 g/L,Ce的负载量0.2 %.在优化条件下,Ce/AC加入有利于催化臭氧氧化DMP过程中TOC的去除.质量浓度30 mg/L(pH=5.0)DMP反应60 min后的TOC去除率由以AC为催化剂的48 %提高到68 %,而单独臭氧氧化过程中TOC去除率仅有22 %.  相似文献   

5.
以超重力旋转填充床(RPB)为反应装置,结合Fenton试剂,研究了臭氧高级氧化技术处理酸性黄23印染废水的效果。考察了初始pH值、Fe 2+离子浓度、H2O2浓度、臭氧质量浓度、旋转填充床转速、NaCl质量浓度、KH2PO4质量浓度、Na2SO4质量浓度等因素对脱色率和COD去除率的影响。实验结果表明,当转速为1000r/min、pH=4、Fe 2+浓度为0.6mmol/L、H2O2浓度为1.5mmol/L、O3质量浓度为40mg/L、液体流量为30L/h时,酸性黄23的脱色率可达到90%以上,溶液COD去除率可达到33%;随着NaCl、KH2PO4质量浓度的增加,酸性黄23脱色率与溶液COD去除率不断减小;改变Na2SO4质量浓度,酸性黄23脱色率与溶液COD去除率变化不大。  相似文献   

6.
目的研究非均相UV/Fenton法对活性艳红X-3B染料废水的氧化降解效果,确定非均相UV/Fenton法处理染料废水的工艺条件.方法在自制光反应器中,采用非均相UV/Fenton氧化法对活性艳红X-3B模拟染料废水进行处理,通过试验研究分析H2O2投加量、催化剂投加量、p H值、反应时间等影响因素对非均相UV/Fenton氧化法降解活性艳红X-3B染料废水效果的影响.结果当H2O2投加量为理论投加量,催化剂投加量为1g/L,初始p H=4,常温下反应60 min时,活性艳红X-3B的脱色率和COD的去除率分别达到92.8%和72.3%.结论非均相UV/Fenton氧化法处理活性艳红X-3B染料废水的效果较好,其中H2O2投加量和催化剂投加量对处理效果影响较大.非均相UV/Fenton氧化法拓宽了p H值适用范围.  相似文献   

7.
非均相催化臭氧氧化技术是一种高效的废水处理技术,但目前非均相臭氧催化剂主要为粉体形态,常用于静态或半连续态反应器中,其于固定床中的催化性能并不明确.设计了连续态固定床反应体系,以γ-Al_2O_3颗粒为载体,Mn、Fe、Ce的氧化物为活性组分制备负载型催化剂,并以对硝基苯酚(PNP)为目标污染物,探究其在不同工艺条件下的催化性能.实验结果表明,负载CeO_2的催化剂催化效果最好;化学需氧量(COD)和总有机碳(TOC)的去除率随着活性组分CeO_2负载量、水力停留时间(HRT)、O_3浓度的增加而增加;当CeO_2负载量为12.3%、HRT为15 min、O_3浓度为16.2 mg/L时,6 h COD和TOC平均去除率分别达到86.3%和91.7%;此外,该体系在pH为5.0~9.0均表现出良好催化性能,并具有良好的长时间运行能力.  相似文献   

8.
采用Fenton氧化技术深度处理青霉素废水,通过单因素试验,研究了pH、H2O2/Fe2+的摩尔比值、H2O2的投加量和反应时间T,4个因素对COD的去除效果及各因素间影响.结果表明:处理废水的最佳条件为废水初始pH为3,H2O2/Fe2+的摩尔比值为1∶1,H2O2的投加量为300 mg/L,反应时间为60 min,此时COD的去除率高达59%左右.在单因素基础上,使用Design Expert软件设计,通过二次回归得到COD去除率与废水的初始pH,H2O2/Fe2+的摩尔比,H2O2的投加量关系的回归模型,该模型能够较好地预测COD的去除率.同时,3个因素对COD去除效果的影响排序为H2O2投加量>H2O2/Fe2+的摩尔比>溶液初始pH,最后得到的优化参数为:pH为2.98,H2O2/Fe2+的摩尔比为0.76∶1,H2O2的浓度为295.10 mg/L,此时COD的去除率为57.415 5%.  相似文献   

9.
为了提高臭氧催化氧化技术在印染废水深度处理中的去除效率,提高催化剂的使用寿命,本研究利用混合法自制非均相催化剂,并考察了其在深度降解印染废水中橙黄G的应用.对废水初始pH、催化剂的投加量和臭氧投放速率3个过程参数进行了优化.研究结果表明,臭氧催化氧化降解橙黄G废水的最佳工艺参数是废水初始pH6~7、反应时间60 min,催化剂的投加量为300 g/L、臭氧投放速率为1.60 mg/(L·min).利用该工艺参数对某印染厂二沉池出水进行深度处理,60 min后出水COD为58.7 mg/L,COD去除率为67.4%,出水COD已经达到国家排放标准(GB18918—2002)的一级B标准.臭氧催化氧化降解橙黄G的过程符合一级反应动力学模型,反应速率常数随废水pH、臭氧投放速率及催化剂投加量的变化规律与单因素实验结果相吻合.  相似文献   

10.
费托合成废水COD高达40~60 g/L,pH低至2~3,必须采用化学方法进行预处理才能有效续接生物处理方法。本研究利用氧化铜对模拟费托合成废水进行臭氧催化氧化降解实验,考察单独臭氧氧化、催化臭氧氧化、催化剂投加量、初始COD对模拟费托合成废水COD去除率的影响,并对COD的降解动力学进行分析。实验结果表明:对于COD的定量分析,与分光光度法相比,重铬酸钾滴定法测定COD的精确性比较高;单独氧化铜吸附和单独臭氧氧化对模拟废水COD的去除率为20%~30%;采用氧化铜和臭氧组合工艺,对模拟费托合成废水COD的去除率较高。当COD初始值为1 000 mg/L时,氧化铜投加量为1 g/L,反应120 min后对模拟费托合成废水的COD去除率达到76.62%;随着初始COD浓度的提高,COD的绝对降解量也成比例逐渐增大。CuO/O_3体系氧化机制分析表明,·OH对模拟费托合成废水中小分子有机酸醇的去除发挥了主要作用。动力学分析结果表明,采用氧化铜催化臭氧氧化工艺,模拟费托合成废水COD的降解过程符合准一级动力学方程,相关性系数高达0.97以上。  相似文献   

11.
为提高臭氧处理制浆废水的效果,分别以活性炭(AC)、氧化铝(Al2O3)和溶胶-凝胶法制备的TiO2/AC、TiO2/Al2O3为催化剂催化臭氧处理制浆废水,采用扫描电镜和X-射线衍射仪对催化剂进行表征.结果表明:AC、A Al2O3、TiO2/AC和TiO2/Al2O3均具有催化性能,可有效提高臭氧对制浆废水化学需氧量(CODCr)和色度的去除效果.动力学分析表明,AC、TiO2/AC、Al2O3和TiO2/Al2O3催化臭氧处理制浆废水的过程中,CODCr降解的反应符合表观二级动力学方程,负载的TiO2提高了反应的动力学速率常数.气相色谱-质谱联用分析表明,臭氧及催化臭氧处理能有效降解去除漂白废水中的烷基苯类、酯类和氯代烃类等有毒有机污染物.  相似文献   

12.
为了制备高效稳定的催化臭氧氧化催化剂,研究了不同载体负载Ru催化剂催化臭氧氧化降解邻苯二甲酸二甲酯(DMP)的效果。结果表明:以Ru作为活性组分时,不适合采用SiO2载体;以Al2O3为载体的RuO2/Al2O3催化剂对有机物的吸附较少,催化作用明显,但是氧化过程中会产生铝溶出的问题;而以活性炭为载体的Ru/AC催化剂对有机物吸附能力较强,催化作用明显,具有很好的稳定性和较长的使用寿命,且催化过程中没有金属溶出的问题,是一种非常有潜力的催化臭氧氧化催化剂。  相似文献   

13.
催化剂载体对催化臭氧氧化活性的影响   总被引:1,自引:0,他引:1  
为了制备高效稳定的催化臭氧氧化催化剂,研究了不同载体负载Ru催化剂催化臭氧氧化降解邻苯二甲酸二甲酯(DMP)的效果。结果表明:以Ru作为活性组分时,不适合采用SiO2载体;以Al2O3为载体的RuO2/Al2O3催化剂对有机物的吸附较少,催化作用明显,但是氧化过程中会产生铝溶出的问题;而以活性炭为载体的Ru/AC催化剂对有机物吸附能力较强,催化作用明显,具有很好的稳定性和较长的使用寿命,且催化过程中没有金属溶出的问题,是一种非常有潜力的催化臭氧氧化催化剂。  相似文献   

14.
利用接触辉光放电反应器产生等离子体降解直接蓝86(DB)水溶液,考察了DB初始浓度、初始pH和Fe^2+对DB降解率的影响.结果表明,当DB初始浓度为30.0mg/L,溶液pH为3.0时,放电90min DB降解率可达72.36%;加入10.0mg/LFe^2+时,放电10min DB降解率可达69.20%.DB降解过程中,随反应时间的延长,溶液pH值逐渐降低,溶液电导率逐渐上升.降解90min后COD去除率为41.76%,加入10.0mg/LFe^2+后10minCOD去除率达38.50%,表明Fe^2+对DB降解有明显的催化作用.  相似文献   

15.
为了研究微气泡臭氧氧化技术处理废水的影响因素,采用微气泡臭氧氧化技术处理酸性大红3R废水,考察臭氧投加量、酸性大红3R废水初始浓度和投加活性炭对微气泡臭氧氧化过程中脱色率、TOC去除率、pH值以及臭氧利用率的影响。结果表明,提高臭氧投加量或降低酸性大红3R废水的初始浓度,酸性大红3R废水的脱色速率和TOC去除速率均有所上升,但臭氧利用率下降。煤质活性炭对微气泡臭氧氧化具有较强的催化活性,能够显著提高酸性大红3R废水的脱色速率和TOC去除速率。臭氧投加量为48.3 mg/min、酸性大红3R废水的初始质量浓度为100mg/L时,处理效果较好。此条件下,处理30min时脱色率达到100%,处理120min时TOC去除率达到78.0%,TOC去除表观反应速率常数为0.015min~(-1),臭氧利用率始终高于99%。而投加5g/L煤质活性炭后,处理15 min后脱色率达到100%,处理120 min时TOC去除率可达到91.2%,TOC去除表观反应速率常数提高至0.037min~(-1)。处理过程中出现中间产物小分子有机酸的积累并继续氧化降解,使得废水的pH值呈现先下降后升高的趋势。可见,对微气泡臭氧氧化影响因素进行优化,可提高污染物去除速率及臭氧利用率,显著改善处理性能。  相似文献   

16.
采用浸渍法制备了Fe2O3负载活性炭(Fe2O3/AC)催化剂,考察了Fe2O3/AC催化臭氧氧化草酸的活性以及天然水体主要本底成分对Fe2O3/AC催化臭氧氧化草酸的影响. 结果表明,臭氧氧化草酸过程中Fe2O3/AC显示了良好的催化活性,草酸的去除主要基于催化贡献. HCO3-、CO32-及腐殖酸对Fe2O3/AC催化臭氧氧化草酸体系均有抑制作用. HCO3-和CO32-加入使催化臭氧氧化体系pH升高,进而降低Fe2O3/AC催化臭氧氧化草酸的活性. 此外,HCO3-和CO32-也是羟基自由基抑制剂,HCO3-、CO32-对体系的抑制作用从侧面验证Fe2O3/AC催化臭氧氧化草酸遵循羟基自由基机理. 腐殖酸加入体系后,与草酸形成竞争吸附和竞争氧化,从而抑制草酸的降解.  相似文献   

17.
通过实验考察了活性炭(AC)催化臭氧氧化-生物活性炭(BAC)组合工艺用于处理珠江原水的净水效能,并与臭氧-活性炭工艺(O3-BAC)进行了比较.结果表明,AC/O3-BAC组合工艺对TOC、UV254、氨氮等指标均具有较好的去除效率,优化参数为:臭氧投加量50 mg/h、曝气量200 L/min、氧化时间15 min.在试验条件下AC/O3-BAC对TOC和CODMn的平均去除率为28.5%和50.3%,较BAC工艺去除TOC和CODMn分别提高16.0%和34.8%;较O3-BAC工艺去除TOC和CODMn分别提高4.9%和5.9%.3组合工艺对有机污染物的去除具有协同效应,有利于将大分子的有机物氧化为小分子的有机物,提高出水的可生化性,从而有利于后续的BAC对有机污染物的去除.  相似文献   

18.
采用水热法合成铁、锰双金属掺杂MCM-41(Fe-Mn-MCM-41),并将其用于控制催化臭氧氧化含溴水体中溴酸盐,研究了初始pH、叔丁醇(TBA)、磷酸盐等对溴酸盐抑制效果的影响. 结果表明,当溶液初始pH为5.0~9.0时,溴酸盐生成量随pH值升高而增加, pH = 5.0时催化剂对溴酸盐的抑制率达到85.9%.叔丁醇(TBA)的加入使单独臭氧氧化与催化臭氧氧化中溴酸盐生成量明显降低,当加入0.1 mM TBA后,溴酸盐分别减少67.7%和81.1%. 磷酸盐的加入(1、5、10 mg/L)会降低溴酸盐生成量,当加入1 mg/L磷酸盐时,单独臭氧氧化与催化臭氧氧化两种体系中,溴酸盐抑制率分别达到29.6%和82.5%. 此外,还研究了体系中生成的HOBr与H2O2浓度,结果表明,单独臭氧氧化中次溴酸浓度高于催化臭氧氧化过程,说明催化臭氧氧化过程是通过阻止Br-氧化生成HOBr/OBr-抑制溴酸盐生成; Fe-Mn-MCM-41/O3中的H2O2浓度高于O3过程,而H2O2是一种溴酸盐抑制物,证明了催化剂的加入可以提高对溴酸盐的抑制率. 因此,Fe-Mn-MCM-41是一种可用于控制含溴水体中溴酸盐生成的臭氧氧化催化剂.  相似文献   

19.
水处理活性炭的超声波再生技术   总被引:3,自引:0,他引:3  
为研究水处理活性炭的再生,利用超声波处理技术,以甲基橙为有机化合物模型,进行吸附饱和木质活性炭的超声处理再生实验。结果表明,Fe^2+、Cu^2+的加入明显提高了超声反应的脱色率。在pH值为1.0,温度为30℃,声能密度为180W/L,Fe^2+和Cu^2+的投加量为0.6g/L的条件下,超声反应30min后,脱色率都可达到95.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号