首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 250 毫秒
1.
以模拟染料废水甲基橙(MO)溶液为目标物,研究了Fe2+、Fe3+均相催化臭氧氧化及负载型铁氧化物非均相催化臭氧氧化对MO的去除特性,并探讨了在非均相催化剂活性炭负载Fe2O3(Fe2O3/AC)、活性氧化铝负载Fe2O3(Fe2O3/Al2O3)催化臭氧氧化体系中pH值、催化剂投加浓度、臭氧浓度、MO初始浓度等工艺参数的作用规律.结果表明,Fe2+、Fe3+、Fe2O3/AC、Fe2O3/Al2O3的加入均能提高MO的脱色率和COD去除率,且Fe2O3/AC、Fe2O3/Al2O3的催化效果更为显著;当Fe2O3/AC、Fe2O3/Al2O3的投加浓度为1.0 g/L,臭氧浓度为15.0 mg/L,MO初始浓度为25.0 mg/L、pH值为5.0时,30 min时Fe2O3/AC、Fe2O3/Al2O3催化臭氧体系降解MO的脱色率和COD去除率分别为89.26%、48.45%和80.34%、38.41%.  相似文献   

2.
应用制备的活性炭(AC)负载活性组分催化剂催化臭氧处理丁香酚模拟废水,通过扫描电镜、X-射线衍射仪和比表面积分析仪对制备的催化剂特性进行表征,考察了AC负载活性组分的种类和初始pH值、负载量、催化剂加入量对催化臭氧氧化降解丁香酚模拟废水过程中COD_(Cr)(重铬酸盐指数)去除效果的影响,并对降解过程中COD_(Cr)的去除反应动力学进行研究.结果表明:AC表面成功负载了活性组分Fe_2O_3、CuO/Cu_2O、CeO_2、NiO,制备的催化剂(Fe/AC、Cu/AC、Ce/AC、Ni/AC)具有明显的催化活性,显著提高了臭氧氧化降解丁香酚模拟废水过程中COD_(Cr)的去除效果,催化活性从大到小依次为Fe/ACCe/AC Cu/AC Ni/AC;制备的Fe/AC具有最高的催化活性,在pH值为11、负载量为3%、Fe/AC加入量为0.3g/L条件下,反应60 min后COD_(Cr)去除率达到88. 90%,分别比AC催化臭氧处理和单独臭氧处理提高了21. 13%和29. 95%.动力学分析表明,臭氧氧化、AC、Fe/AC、Ce/AC、Cu/AC、Ni/AC催化臭氧氧化处理丁香酚模拟废水过程中COD_(Cr)的降解符合表观二级动力学规律,活性炭负载的活性组分有效提高了反应的动力学速率.  相似文献   

3.
系统考察了Fe3O4/rGO复合材料催化臭氧和过硫酸盐降解磺胺嘧啶的效能与机制.研究发现两种高级氧化体系中GO与Fe3O4质量占比为15%的催化剂(Fe3O4/rGO15wt%)对SDZ的降解效率最佳,并观察到Fe3O4和GO之间在对O3和PS催化中的协同作用.同时,研究了水环境共存阴离子(Cl-,SO42-和NO3-)对SDZ降解效果的影响.通过淬灭实验明确了该催化剂在O3体系中SDZ降解中的活性氧化物种,既羟基自由基(?OH),超氧自由基(O2·-)和单线态氧(1O2).在PS体系中,活性氧化物种为硫酸根自由基(SO4·-)和1O2.通过实际水环境的模拟实验和稳定性实验发现,与PS体系相比,该催化剂在O3体系对含SDZ的水体表现出较强的降解效能与更稳定的特性.  相似文献   

4.
用自制的二氧化钛纳米管(TNTs)作为催化剂,对腐殖酸进行TNTs/UV/O3工艺降解研究,优化了工艺参数,对相应的应用基础进行了研究.结果表明,在最佳工艺条件下,本工艺对总有机碳(TOC)去除率高达80.12%,显示了很好的降解能力.投加叔丁醇的实验得出TNTs/UV/O3对腐殖酸的降解遵循羟基自由基理论.从无机碳(IC)的角度分析得出,高pH值易于CO2溶解,从而使原水IC值增大,有助于反应过程中IC值的积累,无机碳多以CO32-及HCO3存在,对·OH有很强的抑制作用.随着反应时间的推移,催化剂污染越来越严重,一定阶段后污染率达到最大值,随后污染情况得到改善.TNTs对TiO2/UV/O3工艺具有很好的催化性能.  相似文献   

5.
采用纳米刻蚀法制备了介孔二氧化锰臭氧催化剂,并考察了其催化臭氧氧化降解草酸的性能.该催化剂高比表面积(142m~2·g~(-1))的有序纳米棒有利于催化剂活性位点的暴露和物质的吸附,从而增强了催化剂的催化活性.羟基自由基是催化臭氧氧化过程中产生的主要活性氧物种,该催化剂的羟基自由基产率是非介孔二氧化锰的2倍;朗缪尔吸附模型表明该催化剂对草酸的吸附能力是非介孔二氧化锰的9.42倍;该催化剂催化降解草酸的准一级反应动力学常数是非介孔二氧化锰的3倍.  相似文献   

6.
甘露  许琳科  张永明 《江西科学》2021,39(4):626-631
分别采用单独臭氧(O3)、单独超声(US)和臭氧与超声耦合(O3&US)的方法对垃圾渗滤液进行降解,考察垃圾渗滤液浓度、酸碱环境、电导率、阴阳离子对方法O3&US降解垃圾渗滤液的影响.结果表明:相同条件下,方法O3&US对垃圾渗滤液的降解能力高于方法O3和方法US.随垃圾渗滤液浓度的增大,方法O3&US的降解效果呈现趋势是先增强后降低.在垃圾渗滤液初始COD为300 mg/L时,方法O3&US降解效果最优,其COD、氨氮、总氮去除率分别是46.8%、38.8%、44.3%.碱性条件能提高方法O3&US降解能力,酸性条件则会起抑制作用.垃圾渗滤液电导率提高,方法O3&US对垃圾渗滤液降解能力降低.阴离子HCO3-和CO2-3会抑制方法O3&US中羟基自由基的生产,降低降解能力,且CO2-3的抑制作用大于HCO3-的.  相似文献   

7.
针对常规水处理工艺的不足,提出臭氧可应用于各种水处理技术中以改善处理效果.该文通过O3/H2O2、臭氧/活性炭、O3/UV等臭氧高级氧化技术,进一步分析臭氧在水中的分解机理,得出羟基自由基的存在是臭氧具有强氧化性的原因之一.羟基自由基的强氧化性,可有效提高处理效果,在各种水处理技术中有着广泛的应用.  相似文献   

8.
比较了单独臭氧氧化、MnO_2催化剂吸附和MnO_2催化臭氧氧化3个体系对模拟草酸废水COD的去除效果,考察催化剂投加量对COD去除率的影响,并建立和验证了草酸氧化降解中的独立反应式.实验结果表明:单独臭氧氧化、MnO_2催化剂吸附和MnO_2催化臭氧氧化3个体系对模拟草酸废水COD的去除率分别为4.94%、20.83%和44.44%.MnO_2催化剂最佳投加量为0.500 g/L时,COD(草酸初始质量浓度500 mg/L,初始COD质量浓度89 mg/L,反应时间1 h)的去除率高达85.87%,由于MnO_2催化O_3产生·OH,MnO_2/O_3体系对模拟草酸废水COD的去除率明显提高.依据化学计量矩阵方法,验证并确立了草酸氧化降解过程的独立反应式.动力学理论计算和实验结果均表明,MnO_2催化臭氧氧化模拟草酸废水COD的降解过程符合准一级动力学方程(R~20.9).  相似文献   

9.
为制备连续流条件下具有高活性和稳定性的臭氧氧化催化剂,采用氧化还原沉淀法制备了锰基负载型催化剂(Mn-CeOx/γ-Al2O3、Mn-FeOx/γ-Al2O3、Mn-CoOx/γ-Al2O3),对其进行表征分析,考察催化剂在苯酚降解过程中的催化活性和稳定性,探究催化臭氧氧化反应机理.结果表明:连续流中n(Mn)/n(Ce)为2:1的Mn-CeOx/γ-Al2O3在催化臭氧氧化降解苯酚时催化活性最佳,TOC去除率达到80.2%,水力停留时间3.3 min、气相臭氧浓度10.3 mg·L-1、溶液初始pH 9为最佳反应条件.经过6次重复实验后苯酚的TOC去除率仍高达79.6%,溶液中活性组分溶出量几乎可以忽略不计.Mn-CeOx/γ-Al2O3催化剂在催化臭氧氧化降解草酸、对硝基酚的过程中也表现出较高的矿化效率,T OC去除率在77% ~83%,该催化剂具有广谱适用性.电子顺磁共振波谱证明催化臭氧氧化反应体系中产生的活性氧物种为瞯OH,Ce的引入有利于提高Mn-CeOx/γ-Al2O3催化剂中Mn4+与晶格氧的含量.  相似文献   

10.
为提高臭氧处理制浆废水的效果,分别以活性炭(AC)、氧化铝(Al2O3)和溶胶-凝胶法制备的TiO2/AC、TiO2/Al2O3为催化剂催化臭氧处理制浆废水,采用扫描电镜和X-射线衍射仪对催化剂进行表征.结果表明:AC、A Al2O3、TiO2/AC和TiO2/Al2O3均具有催化性能,可有效提高臭氧对制浆废水化学需氧量(CODCr)和色度的去除效果.动力学分析表明,AC、TiO2/AC、Al2O3和TiO2/Al2O3催化臭氧处理制浆废水的过程中,CODCr降解的反应符合表观二级动力学方程,负载的TiO2提高了反应的动力学速率常数.气相色谱-质谱联用分析表明,臭氧及催化臭氧处理能有效降解去除漂白废水中的烷基苯类、酯类和氯代烃类等有毒有机污染物.  相似文献   

11.
为了制备高效稳定的催化臭氧氧化催化剂,研究了不同载体负载Ru催化剂催化臭氧氧化降解邻苯二甲酸二甲酯(DMP)的效果。结果表明:以Ru作为活性组分时,不适合采用SiO2载体;以Al2O3为载体的RuO2/Al2O3催化剂对有机物的吸附较少,催化作用明显,但是氧化过程中会产生铝溶出的问题;而以活性炭为载体的Ru/AC催化剂对有机物吸附能力较强,催化作用明显,具有很好的稳定性和较长的使用寿命,且催化过程中没有金属溶出的问题,是一种非常有潜力的催化臭氧氧化催化剂。  相似文献   

12.
催化剂载体对催化臭氧氧化活性的影响   总被引:1,自引:0,他引:1  
为了制备高效稳定的催化臭氧氧化催化剂,研究了不同载体负载Ru催化剂催化臭氧氧化降解邻苯二甲酸二甲酯(DMP)的效果。结果表明:以Ru作为活性组分时,不适合采用SiO2载体;以Al2O3为载体的RuO2/Al2O3催化剂对有机物的吸附较少,催化作用明显,但是氧化过程中会产生铝溶出的问题;而以活性炭为载体的Ru/AC催化剂对有机物吸附能力较强,催化作用明显,具有很好的稳定性和较长的使用寿命,且催化过程中没有金属溶出的问题,是一种非常有潜力的催化臭氧氧化催化剂。  相似文献   

13.
The mechanism of Fe (Ⅲ)-catalyzed ozonation of phenol   总被引:1,自引:0,他引:1  
Fe (III)-catalyzed ozonation yielded better degradation rate and extent of COD (Chemical Oxygen Demand) or oxalic acid as compared with oxidation by ozone alone. Two parameters with strong effects on the efficiency of ozonation are pH of the solution and the catalyst (Fe(3+)) dosage. The existence of a critical pH value determining the catalysis of Fe (III) in acid conditions was observed in phenol and oxalic acid systems. The best efficiency of catalysis was obtained at a moderate concentration of the catalyst. A reasonable mechanism of Fe (III)-catalyzed ozonation of phenol was obtained based on the results and literature.  相似文献   

14.
利用水热法合成介孔材料MCM-41及Fe负载的MCM-41(Fe/MCM-41),并通过催化臭氧氧化水中对氯苯甲酸(p-CBA)考察其催化性能.经过X射线粉末衍射(XRD)、紫外可见漫反射光谱(DR UV-Vis)、傅立叶红外光谱(FT-IR)及比表面(BET)表征,表明所合成的MCM-41及Fe/MCM-41具有较规则的六方孔道结构及较大的比表面积.MCM-41与Fe/MCM-41的加入有利于p-CBA和TOC的去除,其中Fe/MCM-41与O3具有协同效应,表现出较好的催化活性.  相似文献   

15.
采用水热法合成铁、锰双金属掺杂MCM-41(Fe-Mn-MCM-41),并将其用于控制催化臭氧氧化含溴水体中溴酸盐,研究了初始pH、叔丁醇(TBA)、磷酸盐等对溴酸盐抑制效果的影响. 结果表明,当溶液初始pH为5.0~9.0时,溴酸盐生成量随pH值升高而增加, pH = 5.0时催化剂对溴酸盐的抑制率达到85.9%.叔丁醇(TBA)的加入使单独臭氧氧化与催化臭氧氧化中溴酸盐生成量明显降低,当加入0.1 mM TBA后,溴酸盐分别减少67.7%和81.1%. 磷酸盐的加入(1、5、10 mg/L)会降低溴酸盐生成量,当加入1 mg/L磷酸盐时,单独臭氧氧化与催化臭氧氧化两种体系中,溴酸盐抑制率分别达到29.6%和82.5%. 此外,还研究了体系中生成的HOBr与H2O2浓度,结果表明,单独臭氧氧化中次溴酸浓度高于催化臭氧氧化过程,说明催化臭氧氧化过程是通过阻止Br-氧化生成HOBr/OBr-抑制溴酸盐生成; Fe-Mn-MCM-41/O3中的H2O2浓度高于O3过程,而H2O2是一种溴酸盐抑制物,证明了催化剂的加入可以提高对溴酸盐的抑制率. 因此,Fe-Mn-MCM-41是一种可用于控制含溴水体中溴酸盐生成的臭氧氧化催化剂.  相似文献   

16.
为研究溶解氧和外加阴、阳离子对Fe(Ⅲ)/UV催化降解罗丹明B的影响,在间歇式光化学反应器中进行了系列对照试验,用一级动力方程拟合得到了各种条件下罗丹明B的降解速率常数k.结果表明,溶液中氧含量增加能加速罗丹明B的Fe(Ⅲ)/UV催化降解,k提高程度与溶液pH值有关;阴离子草酸根、柠檬酸根、硝酸根能促进罗丹明B的Fe(Ⅲ)/UV催化降解,最佳草酸根和柠檬酸根用量分别为Fe(Ⅲ)物质量浓度的3和4倍,HCO3^-、Cl^-、腐植酸会不同程度地抑制罗丹明B的Fe(Ⅲ)/UV催化降解;阳离子钾、钠、钙、镁均可促进罗丹明B的Fe(Ⅲ)/UV催化降解,但它们对降解速率的提高程度各不相同,并与其溶液的质量浓度有关.上述结果提示Fe(Ⅲ)/UV用于处理含罗丹明B的实际废水时应注意水中其他共存离子对催化降解过程的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号