首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
设S是图G的一个边子集,若G-S不连通且每个分支的阶至少为k,则称S为G的一个k-限制边割.若G有k-限制连割,G的最小k-限制边割的边数称为G的k阶限制边连通度,记为λk(G).记ξk(G)=min{|[X,]|∶|X|=k,G|X|连通},若λk(G)=ξk(G),则称G是λK-最优的.证明了若对G中任意一对不相邻的顶点x,y都有d(x) d(y)≥n 2(k-2),且G不是G*k图,则G是λk-最优的.  相似文献   

2.
设G为n阶连通图,集合S称为图G的全控制集,如果V(G)的每个顶点都和S中某点相邻。图G的全控制数,记为γt(G),是图G的全控制集的最小基数。证明了对阶数n≥3且T≠K1,n-1的树T,γt(T)=min{(2n/3),n-l,[n/2]+l-1},这里l表示树T中叶子的数目。  相似文献   

3.
设G是有限简单无向图,使G-S的每个分支都包含至少k个点的边割S称为G的k-限制边割。G的k-限制边连通度λk(G)是G的k-限制边割之中最少的边数。定义ξk(G)=min{[U,U-]:U V(G),|U|=k,G[U]是连通的},若λk(G)=ξk(G),则称G是λk-最优的。若任意最小k-限制边割都孤立一个k阶分支,则称图G是超级-λk的。应用范型条件给出了图是λ3-最优和超级-λ3的充分条件。  相似文献   

4.
设F?E (G)为图G=(V,E)的一个边集,如果G-F不连通且G-F的每一个连通分支都至少有k个顶点,F就称为图G的一个k-限制性边割.图G的k-限制边连通度是图G的最小k-限制性边割的基数,记为λk(G).限制性边连通度是衡量网络可靠性的重要参数之一.证明了在2≤k≤n,h≤n/2的情况下,一类特殊图—蜻蜓网络D(n,h)的k-限制边连通度是■  相似文献   

5.
设图G是一个连通图,S⊆V(G)。图G的一棵S-斯坦纳树是一棵包含S中所有顶点的树T=(V ',E '),使得S⊆V '。如果连接S的两棵斯坦纳树T和T ',满足E(T)∩E(T ')=且V(T)∩V(T ')=S,则称T和T '是内部不交的。定义κ(S)为图G中内部不相交S-斯坦纳树的最大数目。广义k-连通度(2≤k≤n)定义为κk(G)=min{κ(S)|S⊆V(G)且|S|=k},显然,κ2(G)=κ(G)。证明了κ3(FQn)=n,其中FQn是n-维折叠超立方体。  相似文献   

6.
令S?V(G),κ_G(S)表示图G中内部不交的S-树T_1,T_2,…,T_r的最大数目r,使得对任意i,j∈{1,2,…,r}且i≠j,有V(T_i)∩V(T_j)=S,E(T_i)∩E(T_j)=?.定义κ_k(G)=min{κ_G(S)|S?V(G),且|S|=k}为图G的广义k-连通度,其中k是整数,且2≤k≤n.令Sym(n)是在{1,2,…,n}上的对称群,T是Sym(n)的对换集合.G(T)表示点集是{1,2,…,n},边集是{ij|(ij)∈T}的图.若G(T)是一个轮图,则将Cayley图Cay(Sym(n),T)简记为WG_n.主要研究由轮生成的Cayley图WG_n的广义3-连通度,并证明κ_3(WG_n)=2n-3,其中n≥4.  相似文献   

7.
S?V(G)是G的一个顶点集且|S|≥k,其中2≤k≤n.连接S的树T叫作斯坦纳树.两棵斯坦纳树T1和T2称为内部不交的,当且仅当它们满足E(T1)∩E(T2)=?和V(T1)∩V(T2)=S.令κG(S)是G内部不交的斯坦纳树的最大数目,κk(G)=min{κG(S)∶S?V(G),|S|=k}定义为G的广义k-连通度.很显然,当|S|=2时,广义2-连通度κ2(G)就是经典连通度κ(G).因此广义连通度是经典连通度的推广.主要讨论泡序图Bn的广义4-连通度κ4(Bn).得到的结论是当n≥3时,κ4(Bn)=n-2.  相似文献   

8.
令S■V(G)κ.G(S)表示图G中内部不交的S-树T1,T2,…,Tr的最大数目r,使得对任意i,j∈{1,2,…,r}且i≠j,有V(Ti)∩V(Tj)=S,E(Ti)∩E(Tj)=.定义κk(G)=min{κG(S)|S■V(G),且|S|=k}为图G的广义k-连通度,其中k是整数,且2≤k≤n.完全对换图在网络中是重要的一类Cayley图.该文证明了n-维完全对换图CTn的广义3-连通度是n(n-1)/2-1,也就是说,对于CTn的任意三个点,存在n(n-1)/2-1个连接它们的内部不交的树.  相似文献   

9.
子集S(∩)V(G)称为限制割,若任何点v∈V(G)的邻点集NG(v)都不是S的子集且G-S不连通.若G中存在限制割,则定义限制连通度κ1(G)=min{| S|S是G的一个限制割}.考虑了笛卡尔乘积图,证明了设G=G1×G2×…×Gn,若Gi是满足某些给定条件的ki连通ki正则且围长至少为5的图,其中i=1,2,…,n,则κ1(G)=2n∑i=1ki-2.  相似文献   

10.
单圈图是边数等于顶点数的连通图.令G=(V,E)是无孤立顶点的图,若集合DV(G)是G的一个k-距离控制集且导出子图〈D〉有完美匹配,则称D是G的一个k-距离匹配控制集.k-距离匹配控制数γkp(G)是G的最小k-距离匹配控制集的势.主要证明了单圈图k-距离匹配控制数的一个重要引理,由此找到了单圈图k-距离匹配控制数的上界,并构造了极图.  相似文献   

11.
一个图G(V,E)的控制数γ(G)是V的这样一个子集S的最小基数,使得G中每一个顶点或者在S中或者和S中的一些顶点邻接。本文讨论了控制数为2的n阶简单连通图的邻接谱半径下界,给出了谱半径达到最小时的极图。  相似文献   

12.
不含孤立点的图G称为全控制边临界的,如果对任意两个不相邻顶点u和v, 有γt(G uv)<γt(G).也称这样的图为γt-临界的. 如果该图G的全控制数为k,称G为k-γt-临界的.一个γt-临界图G称为强γt-临界的, 如果对任意顶点v∈V(G)存在G的一个基数为γt(G)-1的控制集D使得G[D]除v外不含孤立点.研究了强γt-临界图的性质,给出了一个由小的强γt-临界图构造大强γt-临界图的方法.  相似文献   

13.
点赋权图Gw=(V,E,W)是指对简单图G的顶点集作一个赋权函数W:V→R^+。在图G所有的控制集D V(G)(V(G)/D中的任意顶点v都与D中的点关联)中最小的权和W(D)称为图Gw的赋权控制数。记作γw(Gw)。证明了对基数为N,平均权为W^-的图Gw,其赋权控制数γw(Gw)≤Nw^-1δ+1^——1+1n(δ+1)。  相似文献   

14.
对于图G=(V,E),如果V\S中的每个顶点都和S中至少1个顶点相邻,且G[V\S]是连通的,则称V的子集S是图G的外连通控制集.外连通控制集的最小基数~γc(G)称为图G的外连通控制数.给出了树删去1条边后对应的外连通控制数的可达下界,定义了关于边删除的~γc-严格图及~γc-稳定图,并对其相关性质进行了讨论.  相似文献   

15.
设G=(V,E)是一个简单图,D是V的一个子集,如果集合V-D的任意点都与D中的点相邻,则称D为图G的一个控制集.图G的最小控制集中的点数称为G的控制数.本文对哈密顿图的控制数进行了研究,证明了命题:如果n阶图G是一个最小度为5的哈密顿图,则图G的控制数就不大于5n/14.  相似文献   

16.
对于一个非空图G=(V,E)和一个函数f:E→{-1,+1},若SE,则记f(S)=∑e∈Sf(e).若对于G中每个非平凡的团K均满足f(E(K))≥1,则f被称为G的一个符号团控制函数,G的符号团控制数表达为  相似文献   

17.
对于任意的正整数l,连通图G的顶点子集D被称为距离l 控制集 ,是指对于任意顶点v D ,D中至少含有一个顶点u ,使得距离dG(u ,v) ≤l.图G距离l 控制数γl(G)是指G中所有距离l 控制集的基数的最小者 .确定图G的距离l 控制数γl(G)是NP 问题 .给出了当G是阶数为p (p ≥l 1 )的连通图时 ,对于任意的正整数l,都有最优上界γl(G)≤ p-Δ l - 1 l .而且针对某些Δ和l,是对Meir和Moon的结果的一种改进  相似文献   

18.
设G=(V,E)是一个没有孤立顶点的图,如果一个函数f:E→{+1,-1},对一切v∈V(G)满足∑e∈E(v)f(e)≥1成立,则称f为图G的一个符号星控制函数。图G的符号星控制数定义为γ’ss(G)=min{∑e∈E(v)f(e)∣f为G的符号星控制函数}。在图的符号星控制概念的基础上,确定了两类特殊图的符号星控制数。  相似文献   

19.
讨论了比无爪图更广泛的图——拟无爪图,得到了以下两个结果: (ⅰ) 若图G是拟无爪图,且满足ω(G-S)≤t(G), 则2t(G)=κ(G). (ⅱ) 若图G是拟无爪图,对于任意的控制集D及任意t∈D,至多存在3点u1,u2,u3∈(V-D)满足N(ui)∩D={t}(i=1,2,3), 则γ(G)=i(G),该结果是最好可能的. 以上结果扩展了无爪图的相应结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号