首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
搭建列车空气动力学在线实车高精测试平台,对列车通过隧道及隧道交会工况下的压力波特性进行实车测试;探究运行速度、隧道长度、阻塞比、编组长度、交会位置等因素对隧道压力波的影响规律;根据隧道内压缩波、膨胀波在隧道内传播、反射、叠加的原理,推导出隧道通过及隧道交会工况下,最不利单线隧道长度、最不利双线隧道长度、最不利交会位置、最不利编组长度等计算公式。研究结果表明:车体表面压力变化幅值与列车速度的平方成正比;车内压力幅值与列车速度的n次方成正比,n的范围为1.3~1.8,n随着隧道长度的变化而变化;研究结果可为高速列车在隧道内运行时的安全性指标提供了压力波评判依据。  相似文献   

2.
列车高速通过隧道时车内压力波模拟试验研究   总被引:1,自引:0,他引:1  
列车高速过隧道时诱发的压力波通过车体缝隙传入车内,给旅客乘车舒适性带来严重影响,在实验室模拟车内压力波动过程以系统研究车内压力波动与人耳舒适性的关系,以便为制定气压变化下科学的人耳舒适性标准提供依据。基于车内压力变化是车体空气进出口流量关于时间的积分,设计以1台罗茨风机、两阀门组及控制单元为核心的车内压力波试验模拟装置,以实现变体积流量交替对车体进行充气和抽气,使车内压力变化曲线不断逼近现场实车试验测得的车内压力变化曲线。研究结果表明:装置试验结果与现场实车试验测试结果基本吻合,说明该装置可真实模拟列车通过隧道时车内压力变化过程。  相似文献   

3.
对400 km/h的16编组列车在不同净空面积(90,95,100,105和110 m2)隧道交会气动载荷进行数值研究,并结合压力舒适性标准对隧道净空面积提出建议。采用RNG k-ε湍流模型和滑移网格法进行数值模拟,并通过动模型实验进行验证。研究结果表明:16车编组的高速列车以速度400 km/h在净空面积为100m2的标准双线隧道内交会时,从头车到尾车方向上,车外表面的平均压力峰峰值不断减小,车内的平均压力峰峰值不断增大;综合考虑现有高速列车气密性与舒适度标准,运行速度为400 km/h的长编组高速列车双线隧道净空面积推荐采用100 m2。  相似文献   

4.
对已在明线工况下连续运营一段时间的16节长编组200 km/h动车进行实车试验,利用车载测试系统重点测试列车经过分相区、紧急制动以及列车到站开启车门3种工况下,客室内气压变化率和室内外压差;并根据车体气密性指数求解方法,分析车体动态气密性指数随时间变化关系。根据测试结果,结合动车组通风换气装置结构特点分析动态气密性指数增大发生耳鸣现象的原因,并提出改进措施。研究结果表明:随着运行时间的增加,室内负压呈线性逐渐增大,室内最大负压为-982 Pa;室内压力变化率随室内外压差的变大而逐渐增大,列车到站开启车门工况下3 s变化率最大为602 Pa/(3 s),1 s变化率最大为564 Pa/s,经过分相区时的最大3 s变化率和1 s变化率分别为263 Pa/(3 s)和93 Pa/s。车体动态气密性指数随运行时间的增加而增加,最大值为11.58。  相似文献   

5.
目前,我国铁路空调客车较注重对空气温度、湿度的控制,对空气品质重视不够。以致长期工作、生活在空调环境中的人们经常出现疲劳、头昏、口干、胸闷、眼痒、精神不佳等症状,甚至出现烦躁、抱怨多、爱发火、注意力不集中等行为上的改变。空调客车车内空气品质差,旅客出现身体不适现象时有发生,乘务员长期工作在这种环境下,会损害健康。在未来的高速列车中,为了避免车外较大的压力波动传至车内,车体将做成气密结构,对于空调系统而言,这种良好的气密性使得自然渗入新风急剧减少,旅客在感到不适时也不可能开窗换气,车内空气品质问题将更为突出。…  相似文献   

6.
针对列车高速驶入隧道时流场的三维、非定常及可压缩湍流等特性,建立了精细化的隧道-列车-空气三维CFD数值模型,对比分析洞口有无横风条件下列车驶入隧道过程中车体周边的瞬态流场结构、压力分布,并研究横风条件下车体的5项气动荷载(气动横向力、气动升力、倾覆力矩、偏航力矩和点头力矩)指标的瞬变特性以及风速和车速变化对其最大瞬变幅值的影响情况.研究结果表明:当列车在横风环境下驶入隧道,洞外部分车体两侧流场结构和压力分布差异显著,而洞内部分差异较小,从而引发列车进洞前后车体压差突变;列车在进洞过程中,车体的各项气动荷载均存在瞬变效应,且尾车同时呈现出倾覆、"上跳"、"蛇形"摆动以及"点头"等行为;风速变化对尾车偏航力矩变化幅值影响较显著,而车速变化对头车偏航力矩变化幅值影响较显著.  相似文献   

7.
采用移动网格原理对列车明线交会的空气动力学特性进行了数值模拟.修正了Steinheur经验公式,并给出了等速交会的列车表面压力波波幅的新计算公式.研究表明:交会列车低速时对应的压力波幅值小于高速时的幅值;波幅与交会速度、交会侧间距和监测点的高度有关,并近似与列车运行速度的平方成正比;交会侧间距越小,波幅越大;在其他条件不变的情况下,交会侧间距比高度对压力波幅的影响大.  相似文献   

8.
针对高速列车全速通过地下车站时所引起的瞬变压力问题,采用列车气动性能动模型试验装置,对8编组高速列车以速度300 km/h通过地下车站时的气动效应进行模拟,分析车站内设有竖井时列车表面、站台屏蔽门表面压力分布特性以及竖井面积对瞬变压力的影响。研究结果表明:当高速列车通过设置有竖井的地下车站时,列车表面、屏蔽门表面左右对称测点压力变化趋势基本一致,压力幅值相差不大;屏蔽门表面压力幅值沿纵向逐渐增大,沿高度方向则变化不大;随着竖井面积增大,列车、屏蔽门表面测点压力幅值均不断下降,相较于无竖井工况,列车表面测点压力幅值最大可降低48.87%,屏蔽门表面测点压力幅值最大可降低71.07%,其中,当竖井面积与隧道面积之比超过0.26时,进一步增大竖井面积,竖井对列车表面、屏蔽门表面的压力幅值的影响不明显。  相似文献   

9.
在合武(合肥—武汉)铁路上进行250km/h等级隧道空气动力性能实车试验;对货物列车单列过隧道及货物列车与CRH2高速动车组在隧道内交会时,集装箱箱体表面的压力变化历程及所受的气动力进行测试。测试结果表明:当2列车在隧道内交会时,交会压力波与隧道内的压力波叠加,造成隧道内列车交会产生的压力变化幅值远大于明线交会产生的压力变化幅值;车体交会侧压力变化幅值比非交会侧压力变化幅值大16%,使得车辆受到较大侧向力作用;双层集装箱车辆进入隧道口时,空气压差阻力急剧上升,之后又逐渐回落;在隧道内运行的平均阻力约为明线运行时阻力的1.56倍,货物列车120km/h和动车组250km/h在大别山隧道和鹰嘴石隧道内交会时,双层集装箱车由气动力引起的最大2s平均倾覆系数分别为0.063和0.067。  相似文献   

10.
针对横风下高速列车在洞口交会时的非定常气动问题,考虑流场的三维、可压缩、湍流特性,建立隧道-列车三维空气动力学模型,利用滑移网格技术模拟列车交会过程,采用SSTκ-ω湍流模型对列车交会全过程进行求解,研究横风对隧道内瞬变压力、列车风及流场分布特性的影响规律.研究结果表明:横风下列车交会时,洞口处气动压力系数变化幅值显著增大,交会完成时,列车之间压力系数峰-峰值较无横风情形增大30.6%;列车交会开始和完成时气动压力均发生突变,隧道中部附近气动压力峰值最大;横风下列车交会气动压力大小与空间位置有关,交会时列车间气动压力变化幅值分别是列车迎、背风侧压力变化幅值的2.2和1.5倍;横风对洞口附近列车风影响显著,横风时迎风侧列车风峰值最大,无横风时背风侧列车风峰值最大,且前者是后者的2.04倍;隧道内气动效应受横风影响范围有限,当横风为30 m/s、车速为350 km/h时,隧道内气动效应受影响范围为120 m;横风下交会开始与完成时,流场分布急剧变化,导致气动压力与列车风发生突变.  相似文献   

11.
搭建了整备状态下的某高速列车动力车厢有限元模型,包括白车身、内饰件和牵引传动系统.提出了多物理场激励耦合作用下的高速列车车内结构辐射噪声分析方案,分别采用刚性多体动力学、边界元法和大涡模拟获取了二系悬挂力、轨道噪声和车体表面压力脉动,与车体模态耦合后得到车体结构的振动响应.完成了时速350,km/h下的列车搭载试验和车体结构响应计算,在地板上随机选取了一个振动测点,仿真与试验得到的振动速度级曲线趋势和幅值具有较高的一致性,验证了仿真模型与多物理场耦合激励的精度.最后采用耦合边界元分析了耦合激励下的车内结构辐射噪声.  相似文献   

12.
以列车车厢内CO2浓度为控制对象,实现对新风量的控制.在车内CO2浓度控制系统中,应用模糊控制理论,将车内CO2浓度与设定浓度之间的误差以及误差变化率作为控制系统的输入量,新风阀门开度的变化作为输出量,并建立各输入、输出量的模糊集、论域、隶属函数以及模糊控制规则;确定列车硬座车厢内CO2浓度与时间、新风量之间的函数关系式,并应用所建立的模糊控制系统对列车硬座车厢内的CO2浓度进行模糊控制仿真实验,研究新风量与车厢内CO2浓度之间的变化关系.研究结果表明:运用模糊控制理论可对车内CO2浓度实现稳定、可靠的控制,为改善车厢内空气品质提供了一种新方法.  相似文献   

13.
随着地铁列车速度不断提升,列车高速通过隧道风井(缓冲结构)时隧道内交变压力显著增加,会对列车内乘客造成严重影响。本文采用滑移网格方法,通过模拟地铁列车由车站开始加速并以最大速度通过隧道风井缓冲结构过程的气动性能,分析风井缓冲结构的参数对隧道内交变压力的影响规律。研究结果表明:列车表面压力数值计算结果与实车试验结果较吻合。风井缓冲结构可以有效减小列车通过风井时的压力变化幅值,风井前缓冲结构对列车通过时的压力变化率影响较大,而对列车压力变化幅值影响较小,风井后缓冲结构可以有效减缓列车通过风井过程的压力突变。随着缓冲结构横截面积增大,列车通过风井时的压力变化幅值呈减小趋势,但不同缓冲结构下列车表面压力差异较小。当缓冲结构总长度一定时,随着风井后缓冲结构长度增加,列车表面压力变化幅值呈减小趋势;当风井后缓冲结构的长度由0 m增加至50 m时,头车表面压力幅值减小21.5%。  相似文献   

14.
为研究风向角对驶出隧道过程中高速列车气动效应的影响,以某型高速动车组列车为研究对象,采用数值模拟方法对隧道内气动压力、列车风风速、流场分布及列车气动荷载进行分析。通过与动模型试验结果进出对比,验证数值模拟方法的准确性。研究结果表明:隧道壁面气动压力峰值及变化幅值最大值出现在隧道内部,且出现位置到隧道出口距离与风向角有关;背风侧气动压力受风向角影响更大,气动压力变化幅值随风向角增大呈现先减小后增大再减小的趋势;出口处列车风风速随风向角增大基本呈现先增大后减小的趋势,30°风向角时列车风风速最大,但迎、背风侧列车风风速峰值出现时刻不同;随着风向角增大,流场分布不对称性增强,列车绕流特性由流线型绕流逐渐过渡到钝体绕流,流动分离点到头车鼻尖的距离呈现先增大后减小最后再增大的变化规律,隧道内流动结构愈加复杂;气动横向力、升力变化幅值随风向角增加呈现先增后减趋势,头车横向力系数最大变化幅值分别是中车、尾车的2.4倍和2.6倍,升力系数最大变化幅值分别是中车、尾车的1.1倍和1.5倍,故保证头车安全是控制整车运行安全的关键;侧风下高速列车驶出隧道情形下的最不利风向角为30°,此时头车发生列车事故风险...  相似文献   

15.
为研究高速列车车身表面各区域声源对列车车外噪声的贡献量,基于车外声源识别和几何声学理论,建立高速列车车外噪声仿真预测模型,并通过ISO标准测点处现场测试结果对其进行校核。利用车外声源识别结果对车身表面处各区域声源声功率贡献量进行量化排序,再借助车外噪声预测模型计算分析各区域声源对车外通过噪声的贡献量及车外通过噪声对关键区域声源强度变化的灵敏度。研究结果表明:当高速列车以300 km/h速度运行时,不同区域声源声功率贡献量及其对车外通过噪声贡献量差异较大,其中轮轨区域声源对总声功率贡献量和对车外通过噪声的贡献量分别为39.1%和37.6%,对列车车外噪声起到主导作用;其次为车体下部区域声源,贡献量分别为25.7%和34.1%。高速列车车外通过噪声对轮轨区域声源和车体下部区域声源变化的灵敏度分别为0.39和0.35,即每降低轮轨区域噪声1 dB,可以有效降低车外通过噪声0.39 dB。  相似文献   

16.
采用三维、可压缩、非定常N-S方程的数值计算方法,对8辆编组的高速列车以300 km/h速度通过带有套衬结构隧道时车体表面及隧道壁面的瞬变压力进行分析。研究结果表明:数值计算结果与动模型实验结果较吻合,2种方法得到的压力曲线变化规律一致,幅值误差在5%以内;列车通过隧道时,车体头、尾处测点压力差别较大,中部测点压力差异较小;沿列车车身方向,测点正压幅值逐渐减小,负压幅值逐渐增大;隧道壁面测点压力峰峰值在隧道进、出口附近较小,而在靠近隧道中部时较大;隧道内安装套衬对于高速铁路双线隧道气动效应影响很小,加装套衬前后,测点压力幅值差异在2%以内。因此,建议在对高速铁路隧道病害整治中,考虑使用套衬技术。  相似文献   

17.
基于N-S方程及k-ε两方程紊流模型,采用有限元法对2列高速列车在隧道内交会时引起的车内压力变化及各参数对乘坐舒适性的影响进行了仿真分析.研究结果表明:2列高速列车在隧道内会车时的瞬变压力值与列车会车的地点、列车长度、列车速度及列车的密封指数均有关系,同车长、车速、密封指数的情况下,会车在隧道中部时瞬变压力变化值最大;同隧长、车速、密封指数的情况下,会车于相同地点时,较长车长的瞬变压力最大变化值要高于较短车长的;当列车的密封指数大于15s时,各种计算工况均能满足列车内瞬变压力容许值1.25kPa/3s的评价标准.  相似文献   

18.
应用相对论和热力学理论以及热力学模型,研究了高速列车行驶时,厢内气体的热力学性质和分子分布以及列车通过隧道时车内压力波动规律.以理想气体为例,探讨了列车速度对它们的影响.结果表明:①与静止时相比,列车高速行驶时,车内总粒子数、压强等不变,而温度将降低,体积将减小,粒子能量ε、动量g和系统的能量E都将增大,而且速度越大,这种变化越大;②列车运动时,车内气体分子分布与静止时不同;③考虑相对论效应后,列车通过隧道时车内压力波动要比不考虑相对论效应情况的压力波动要大.但在目前列车速度情况下,这种影响很小.  相似文献   

19.
为分析高速列车车内低频噪声主要来源,利用振动声辐射理论研究了车内声场特性与内饰板振动的关系.实验室半实物试验结果表明,内饰板振动和车内声场耦合响应特性在空气声和结构声传播过程中具有普遍适用性.应用该方法对某高速列车不同速度级、明线和隧道运行条件下的车内噪声特性进行分析.结果表明,列车运行速度越高,内饰板低频振动幅值增加越显著,这导致车内低频噪声的峰值更加突出.对于350km·h~(-1)速度工况,明线工况的低频噪声峰值主要来源于地板结构声辐射,而隧道环境下的噪声增加主要来源于侧墙和车顶结构的声辐射,并对各面板贡献度进行了定量化计算.最后,用工况噪声传递路径分析(OTPA)方法开展了噪声源贡献度定量化计算,结果表明,气动噪声所占比重最大,但振动激励的总和达60%,尤其是160Hz的峰值频率处,风机振动激励的贡献度最大.  相似文献   

20.
为研究内置开孔隔墙隧道内列车车体压力波动特征,基于有限体积方法的流体力学计算软件建立了非定常可压缩三维流动模型,对内置开孔隔墙高速铁路隧道内列车车体压力进行了计算分析。结果表明:隧道内置开孔隔墙后:①车体压力波形基本与无隔墙时一致,但波动程度加剧且出现有规律的周期振荡;②隔墙开孔间距和开孔面积对车体压力波的影响明显;③车体压力波幅值与车速成正相关关系,但其振荡周期与车速成反比;④相对于单车,列车对向运行时车体压力波明显增大,但两者的差值随着开孔间距的增大、开孔面积的减小和隧道长度的增加而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号