首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
对高速列车由横风环境驶入隧道过程中流场的非定常、可压缩以及湍流等特性,建立了隧道-列车-空气三维CFD数值模型,分析了列车驶入隧道时各节车厢的气动荷载瞬态变化特征及对应的车厢运行姿态变化,并从流场角度揭示了其变化机理,最后探讨了气动荷载对车厢的冲击效应.主要结论如下:(1)当列车由横风环境驶入隧道时,各节车厢的5项气动荷载均表现出显著的突变特征,相应地各节车厢均会呈现瞬间偏转以及瞬间"点头"等行为;(2)车厢两侧压差在纵向上的巨大差异是导致车厢横向力和倾覆力矩的突然卸载以及偏航力矩骤增的根本原因;(3)横风是导致气动荷载对车厢冲击强度显著升高的主要因素;(4)头车的安全系数是控制整列车运行安全性的关键.  相似文献   

2.
采用三维、可压缩、非定常N-S方程的数值计算方法,对8辆编组的动车组在20 m/s横风下以250 km/h速度交会时列车表面瞬变压力和车体所受气动力及力矩进行分析,并采用间接验证方法,将风洞实验、动模型实验得到的结果分别与数值模拟结果进行对比。研究结果表明:间接验证方法下所得气动效应实验结果和数值模拟结果变化规律一致,压力幅值相对误差在5%以内;动车组横风下交会时,车体头、尾处测点压力差别较大,中部位于同侧测点压力差异较小,同一高度、不同纵向测点的压力变化波形及幅值基本一致,车体顶部测点压力始终为负;对于车体所受横向气动力及倾覆力矩,头车比中间车和尾车的大,背风车比迎风车的大;随着横风风速的增加,列车所受横向气动力及倾覆力矩峰值也迅速增加,严重威胁着动车组的安全运行。  相似文献   

3.
为研究桥上动车组穿越复杂峡谷地形时的横风气动特性,本文以CRH6型动车组为研究对象,基于三维、粘性、不可压缩的N-S方程和k-s湍流模型,采用滑移网格技术,耦合高架桥、横风和车速,计算复杂三维峡谷地形下动车组的气动载荷.研究结果表明:列车表面压力在流线型头部有显著变化,压力最大值出现在列车头部鼻端点区域;随着车速和横风风速的增加,压力最大值、整车侧向力、升力和倾覆力矩均呈现增大的趋势;对比分析发现,列车穿越峡谷中时,整车侧向力、升力和倾覆力矩都达到最值,且横风风速增大对列车气动力特性的影响远远大于车速增大对列车气动力特性的影响.本文研究结果可为复杂峡谷地形条件下的桥上动车组安全平稳运行提供理论依据.  相似文献   

4.
高铁线路隧道-桥梁-隧道路段常伴随强烈的横风,列车行驶至隧道与桥梁连接段时常常受到横风的突然冲击,严重影响了列车的行车安全性。基于计算流体力学RNG湍流模型和多孔介质理论,建立列车-隧道-桥梁-风屏障三维CFD数值模型和风-车-轨-桥动力耦合分析模型,研究了高速列车通过隧道-桥梁-隧道路段过程中列车的气动荷载和行车安全指标的变化特性。结果表明:桥隧相连段设置风屏障后,各节车厢的气动荷载突变幅值显著降低,降幅达50%以上,其中横向力和倾覆力矩受风屏障的影响最为显著,降幅高达88%以上;设置风屏障后列车行车安全指标显著降低,迎风侧和背风侧各轮对(除了头车1、3号轮对外)的安全指标波动幅度相同;头车的安全指标对整个列车行车安全性起控制作用,尤其是头车转向架前轮(即1、3号轮对)的;列车由隧道驶入桥梁过程中的行车安全性较由桥梁驶入隧道过程的小。  相似文献   

5.
运用滑移网格技术,选用工程上常用的k-ε双方程湍流模型,对横风环境下高速列车出隧道口时的瞬态空气动力特性进行数值模拟,得到不同风速、不同车速下列车受到的瞬态风荷载。计算结果表明:车体所受的瞬态风荷载在列车出隧道口的过程中急剧增大,随着列车逐渐脱离隧道而趋于常数;对车辆安全影响较大的侧向力、侧滚力矩中,头车受到的气动力变化幅值最大、尾车最小,中间车居中;列车出隧道过程是车体周围流场压力不断上升的过程;车体水平中心截面上的静压系数曲线在车头处存在1个大2个小共3个峰值;随着列车的运行,其中迎风面的第2峰值逐渐增大超过原最大峰值,而背风侧第2峰值基本保持不变。  相似文献   

6.
为研究风向角对驶出隧道过程中高速列车气动效应的影响,以某型高速动车组列车为研究对象,采用数值模拟方法对隧道内气动压力、列车风风速、流场分布及列车气动荷载进行分析。通过与动模型试验结果进出对比,验证数值模拟方法的准确性。研究结果表明:隧道壁面气动压力峰值及变化幅值最大值出现在隧道内部,且出现位置到隧道出口距离与风向角有关;背风侧气动压力受风向角影响更大,气动压力变化幅值随风向角增大呈现先减小后增大再减小的趋势;出口处列车风风速随风向角增大基本呈现先增大后减小的趋势,30°风向角时列车风风速最大,但迎、背风侧列车风风速峰值出现时刻不同;随着风向角增大,流场分布不对称性增强,列车绕流特性由流线型绕流逐渐过渡到钝体绕流,流动分离点到头车鼻尖的距离呈现先增大后减小最后再增大的变化规律,隧道内流动结构愈加复杂;气动横向力、升力变化幅值随风向角增加呈现先增后减趋势,头车横向力系数最大变化幅值分别是中车、尾车的2.4倍和2.6倍,升力系数最大变化幅值分别是中车、尾车的1.1倍和1.5倍,故保证头车安全是控制整车运行安全的关键;侧风下高速列车驶出隧道情形下的最不利风向角为30°,此时头车发生列车事故风险...  相似文献   

7.
基于横风作用下高速列车流场的非定常特性,建立了横风-列车-桥隧模型进行仿真计算,并通过1∶8列车动模型试验验证数值方法的准确性。随后研究横风条件下列车突出隧道时,隧道内外瞬态气动压力、气动荷载变化及流场特性,揭示了横风-列车-隧道之间的相互作用机理。研究结果表明:随着横风风速的增大,压力逐渐减小,但压力随时间的变化规律相似;横风对隧道出口处及隧道外监测点处的压力梯度有明显的影响,对于隧道内的监测点几乎没有影响;随着横风风速增大,隧道外背风侧正压峰值随风速增大略有减小,迎风侧正压峰值基本保持不变,背风侧负压峰值减小速率大于迎风侧;横风对列车突出隧道运行过程的压力波动影响有限,在横风风速为20 m/s时,隧道外界流场影响隧道内气动压力的范围不超过20 m。同种横风条件下,迎风侧、背风侧监测点处压力时程变化规律不相同,压力梯度峰值出现的位置也不同,且位于列车同侧越靠近地面的监测点处压力峰值及压力梯度峰值绝对值越大;横风下,气流经过车-桥系统时,在桥底部、列车背风侧顶部及底部发生明显的流动分离现象,导致隧道外车体两侧的压差大于隧道内车体两侧压差。  相似文献   

8.
以国产CRH3型3节车编组高速列车为研究对象,利用计算流体力学软件Star-CD/CCM+计算了在不同横风风速和不同车速下的列车气动力荷载;将该荷载导入动力学仿真软件SIM-PACK的列车运行动力学模型中,计算出在不同横风和车速条件下的脱轨系数、减载率和倾覆系数等运行稳定性参数.计算表明:头车的气动性能和运行稳定性受横风的影响最大;根据车辆动力学性能参数确定的列车安全速度限值与横风风速之间并非线性关系.参照有关高速列车运行稳定性评定标准,给出了不同横风风速下高速列车安全运行的速度限值.  相似文献   

9.
以我国高速铁路沿线上某座隧道-桥梁-隧道基础设施为工程背景,基于计算流体力学和多孔介质理论建立了列车-隧道-桥梁-风屏障-空气三维CFD数值仿真模型,研究了列车运行于隧-桥-隧全过程的气动荷载变化特性.针对横风环境中列车运行于桥隧相连段的过程,从流场角度进一步揭示了风屏障的存在与否对气动荷载突变效应的影响.结果表明:1)无风屏障条件下,各节车厢在"由桥至隧"过程的气动荷载波动幅度是"由隧至桥"过程中相应值的1.03~1.89倍,而风屏障的存在将使两过程中气动荷载波动幅度基本相等;2)列车气动横向力的变化对风屏障的影响最为敏感,而气动升力和俯仰力矩的敏感性相对较弱.  相似文献   

10.
采用分离涡方法模拟恒定风场中高速列车绕流的非定常流动,在时域和频域内分析车辆气动特性的瞬态性质。结果表明:在恒定来流中,列车的背风侧和尾车的尾迹区存在着强度不同、空间几何尺度各异并随时间随机变化和脉动的分离涡;各节车辆的非定常气动荷载的时均值与按整场定常流动计算得到的结果基本一致,但瞬态荷载峰值却比时均值高出较多;振幅频谱和功率谱密度的最大峰值所对应的频率不尽相同,但都集中在0~4 Hz内,处于某些列车部件的固有频率范围内。头车的横向力和倾覆力矩的分布频率范围较大,与车体自身频率耦合的范围较宽,横风气动安全性较差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号