首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
许崇良  朱君 《科技资讯》2011,(4):66-68,70
目前中小型电动车辆常用MC33039、MC33035,IR2130及MOSFET组成电机驱动电路.电动车辆制动或减速时,若电机的转速低于电机的额定转速,无法实现能量回馈.本文主要介绍在IR2130及MOSFET之间增加电子开关,关断驱动桥的上臂三个MOSFET功率管,利用下半桥构成半桥斩波式斩波升压回馈电路,实现电动车辆制动或减速时能量回馈.  相似文献   

2.
一种城市电动公交客车制动能量回馈方法   总被引:1,自引:0,他引:1  
为提高汽车能源利用率,提出一种电回馈制动与机械摩擦制动相结合的城市电动公交客车制动能量回馈方法.采用可控制实现串并联实时切换的超级电容器模块作为电源,当电动公交客车驱动运行时,控制超级电容器模块串联放电提供能量;而当电动公交客车制动运行时,控制超级电容器模块并联充电回馈能量.在制动初始阶段,采用电回馈制动,电动机发电运行并提供恒制动扭矩,当电动机转速减至不能提供恒制动扭矩时,由机械制动提供制动力直至制动过程结束.仿真和试验结果证明:提出的制动能量回馈方法可实现低速制动能量回馈,具有较高的制动能量回馈效率.  相似文献   

3.
毕竟 《科技信息》2010,(22):I0085-I0085
如何充分提高电动汽车行驶能效,延长车辆续航里程,是电动汽车技术需要解决的一个关键问题。能量回馈是解决该问题的主要措施。在回馈状态时,驱动电机按发电机运行,将车辆行驶动能转化为电能。能量回馈制动与其它电气制动方式比较,无须改变系统硬件结构,回馈电流可柔性控制,可使制动效果与能量回收效果综合最佳。  相似文献   

4.
本文采用调节步进电机绕组斩波电平来适应运行频率和负载的变化的方法,解决开环步进电动机驱动系统在中频的某些频率点出现振荡,以及在高频区出现电磁力矩下降的问题.并设计了一种应用于步进电机驱动的自适应电流斩波控制系统,使驱动电路能随运行频率和负载的大小调整其控制参数,解决了步进电机在某些高频点的谐振和失步问题.  相似文献   

5.
本文阐述了步进电动机驱动电路的基本组成和工作要求,介绍了步进电动机驱动电路各单元电路的设计方法,指出斩波恒流驱动和细分驱动将成为步进电机驱动的发展方向,具有良好的发展前景.  相似文献   

6.
变频调速异步牵引电机,与变频器配套,作为电动汽车或混合汽车(油动加电动)的主动力或第二动力。由变频电源供电,既可作电动机运行给车辆提供牵引力,同时又可作为异步发电机运行在车辆轻载或制动工况下,将发动机富裕的机械能或制动时的动能再生为电能向蓄电池充电,将能量存贮起来。本文介绍了变频调速原理并针对这种电机的要求,如体积小、重量轻、效率高,有宽广的调速范围和较大的扭矩等等提出了电磁设计方案。  相似文献   

7.
电动助力控制是电动助力转向的基本控制策略,并决定电动助力的特性.EPS的控制系统主要由控制器、传感器及信号处理电路、助力电机及驱动电路等组成,讨论了电动助力控制的一般过程、电动机目标电流的控制策略等问题.台架实验表明,提出的控制策略是有效的.  相似文献   

8.
基于PID控制策略的汽车电动助力转向系统   总被引:1,自引:0,他引:1  
电动助力控制是电动助力转向的基本控制策略,并决定电动助力的特性。EPS的控制系统主要由控制器、传感器及信号处理电路、助力电机及驱动电路等组成,讨论了电动助力控制的一般过程、电动机目标电流的控制策略等问题。台架实验表明,提出的控制策略是有效的。  相似文献   

9.
用于电动汽车的模糊转矩控制系统的仿真   总被引:3,自引:1,他引:2  
为了改善电动汽车驱动系统的性能,提出了一种感应电动机的模糊转矩控制系统。系统选用电机定子磁链误差、电机电磁转矩误差及磁链位置角作为模糊变量,利用模糊逻辑选择开关状态,有效地提高了系统暂态时转矩响应。仿真结果证明,本文提出的控制方法保证电机高效、稳定、快速地产生电磁转矩。通过比较模糊转矩控制系统和直接转矩控制系统,模糊转矩控制系统更适合作为电动车驱动系统。  相似文献   

10.
详细介绍了实用环保型驾校教练车油改电技术的改装方案、手段与关键技术。油改电后的纯电动教练车在真实模拟教练车原有动力性、操纵性、舒适性和驾训功能的基础上,以蓄电池作为车载电源,永磁无刷直流电动机作为驱动电机,加上电机控制系统3部分组成的电动教练车动力系统替代原车燃油发动机。产品试验结果显示其实用、安全、环保、节能,具有广阔的市场前景。  相似文献   

11.
一种改进的再生制动控制策略优化   总被引:1,自引:0,他引:1  
为了充分利用混合动力汽车的再生制动能量,提高整车燃油经济性,通过分析混合动力汽车再生制动系统的工作原理,依据理想的前后轮制动力分配曲线,基于比例控制策略,提出了一种并行制动力的分配策略,以对摩擦制动力和再生制动力进行合理分配.进而以平均再生制动力为目标,选取制动控制策略控制曲线上的关键点坐标为控制变量,对并行再生制动控制策略进行了优化设计.选取Saturn SL1为研究车型,在市区15工况下进行了仿真研究.结果表明,优化后的并行控制策略既可以满足制动安全性的要求又可以回收更多的制动能量.  相似文献   

12.
电动汽车可以通过再生制动提高动力电池的能量利用效率并延长续航里程;而电动汽车的再生制动效率依赖于其制动力的分配策略。在不同制动强度下,电动汽车再生制动过程制动力的分配比例应该不同,需要根据驾驶员踩踏制动踏板的位移进行制动意图和制动强度的识别。基于制动踏板位移对应的电压和电压变化率,设计了个模糊逻辑控制器,分别进行驾驶员制动意图和制动强度的识别。将驾驶员的制动意图分为缓慢制动、中等制动和紧急制动三种状态;并对三种状态下的制动强度变化进行准确的识别。搭建了由制动踏板、dSPACE半实物仿真平台和Control Desk调试界面组成的测试系统。对设计的模糊逻辑控制器进行了实验测试。测试结果显示,制动踏板位移对应的电压和电压变化率可以反映驾驶员的制动意图和制动强度,通过设计的模糊逻辑控制器可以识别出驾驶员的制动意图和对应的制动强度变化。因此,本系统可以用于电动汽车再生制动过程中进行制动强度的识别和基于制动强度的制动力分配,提高电动汽车的能量利用效率。  相似文献   

13.
电动汽车再生制动能量回收系统可以提高其续航里程。本文以某前驱型电动汽车为研究对象,分析了其在行驶过程及制动过程中制动力分配情况,综合考虑ECE制动法规、电机峰值转矩及电池充电性能等主要限制性条件,融合驾驶员制动强度判别特性,提出了一种适合本文电动汽车的再生制动力分配控制策略;基于MATLAB/Simulink软件平台进行了建模仿真,并将仿真结果与理想制动力分配策略进行对比。结果表明,该控制策略能够在保证制动效能的同时实现能量回收,能量回收效率达到34.179%,高于理想制动力分配策略。  相似文献   

14.
根据已在我国多个城市运营的某混合动力客车车型现有的制动系统及其工作模式的介绍,展开再生制动能量管理和控制策略的研究。以理论分析和仿真研究为手段,揭示目标车型再生制动控制策略下的制动安全性能及制动能量回收率的表现,从而为进一步提高混合动力客车再生制动系统性能提供了参考依据。  相似文献   

15.
针对采用增加蓄电池容量解决电动汽车续驶距离短困难的现状,提出采用再生制动的方法实现机械能向电能的高效转化.建立了制动系统的数学模型,阐述了再生制动能量回收系统的控制策略,设计了制动能量回收控制器,并利用Proteus软件进行了仿真.仿真结果表明该模型可以简便、有效地实现电动汽车的电气回馈制动,提高电动汽车的能量利用率.  相似文献   

16.
混联式混合动力再生制动控制策略   总被引:1,自引:0,他引:1  
 再生制动系统是混合动力汽车和电动汽车特有的系统。该系统可将汽车制动过程中消耗的汽车动能和势能通过电动机发电的方式储存到电池中,在起动和加速过程中加以利用。本研究以长丰CJY6470E越野车为对象,在传统汽车制动理论的基础上,基于制动安全及制动效能,提出一种混联式混合动力汽车制动能量分配与再生制动控制策略。前后轴采用理想制动力分配,在分配好后,再对前后轴的再生和摩擦制动进行二次分配。进行二次分配时,主要考虑电机及电池的使用寿命,以车速及SOC作为电机再生制动功率影响因素,并通过对ADVISOR2002进行二次开发,建立整车模型,最后进行仿真。结果表明,采用所提出的再生制动控制策略可实现高效的制动能量回收,延长电池的使用寿命,且该策略具有可行性。  相似文献   

17.
全轮驱动混合动力汽车再生制动系统控制策略   总被引:1,自引:0,他引:1  
在传统汽车制动理论的基础上,基于最大回收制动能量和制动的安全性,提出了一种全轮驱动混合动力汽车制动能量分配与再生制动控制策略.综合考虑电机电池效率等限制因素后,进行整车再生制动系统建模和典型制动工况下的仿真.结果表明,在制动车速为30 km/h,制动强度Z分别为0.1、0.3、0.5下最大能量回收率分别可达87.5%、47.8%、28.6%,采用提出的制动能量分配与再生制动控制策略能满足整车制动力分配的要求,并实现高效的制动能量回收.  相似文献   

18.
电动汽车再生制动控制策略研究   总被引:4,自引:0,他引:4  
制定合理的再生制动控制策略,使其在保证制动稳定性的基础上,最大限度回收制动能量. 通过对汽车制动动力学和相关法规的分析,结合电机的输出特性,建立了电机模型,提出了一种前后轮制动力分配的控制策略,并在Advisor软件上进行了仿真分析. 与常用的比例制动控制策略相比,该控制策略能充分利用电机的制动转矩,大幅提高制动能量的回收;同时也很好地满足了制动稳定性要求.  相似文献   

19.
汽车再生制动系统机电制动力分配   总被引:5,自引:0,他引:5  
对汽车制动能量再生系统的机电制动力分配控制方法进行了研究,以电机制动效能为依据划分制动模式,提出了常规液压制动与再生制动力(电机制动)协调控制方法,建立了相应的再生制动系统机电制动力分配控制策略模型,并且对控制模型进行了仿真分析.结果表明,该再生制动系统机电制动力分配控制策略能够保证汽车前后轴制动力分配随理想制动力分配I曲线变化,实现良好制动性能,制动过程中增加了电机制动率,从而提高了汽车制动能量的回收率.  相似文献   

20.
冯平 《科技信息》2010,(23):J0095-J0095
制动电阻控制器是将制动产生的能量转化为电阻的热能,从而实现降低直流电压的目的,本文阐述了西门子变频器加装制动电阻控制器的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号