首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
超级电容器(SCs)作为一种新型的储能装置,与传统的可充电电池相比,具有更快的充放电速率、更高的功率密度和更长的循环寿命,受到人们的广泛关注.拥有较大的比表面积、多样的组成结构和高度分散的金属活动中心等优势的金属有机骨架材料(MOFs),逐渐成为高性能电化学储能材料的研究热点.然而,MOFs直接作为SCs电极材料的使用仍面临着导电性差和机械、化学稳定性差的问题.在此,主要阐述MOFs及其复合物在超级电容器材料应用领域的研究进展,讨论MOFs基超级电容器的结构特征及其在电化学储能领域中展现出独特的性质和新颖的功能,说明MOFs构筑的超级电容器在新能源储存与转换领域发挥重要作用.最后,对MOFs基超级电容器实际应用进行分析与展望.  相似文献   

2.
为解决混合动力汽车单一电池能量存储系统循环寿命短、功率密度小等问题,引入蓄电池-超级电容器复合电源储能系统,充分发挥蓄电池比能量大和超级电容器比功率大的优点.分别对被动式、改进型被动式和主动式结构复合电源进行分析与研究,同时在MATLAB 7仿真环境下对这3种结构复合电源进行建模,对仿真结果进行对比分析.研究结果表明:复合电源的功率输出能力大大提高,蓄电池的放电过程得到了优化;主动式结构复合电源相对于被动式和改进型被动式结构,其效果更好.  相似文献   

3.
MXene是一种新型的二维过渡金属碳化物或碳氮化物,具有类似石墨烯的二维结构.MXene因其独特的物理和化学特性,以及在储能、催化、电子与光电子等领域中的良好应用前景而受到广泛关注.介绍了MXene材料的制备、表征以及在锂离子电池、钠离子电池、锂硫电池和超级电容器等储能器件上的最新研究成果.最后,对MXene材料的未来发展和挑战进行了介绍.  相似文献   

4.
超级电容器因其高功率密度、长循环寿命,兼具传统电容高功率密度和电池高能量密度的优点,引起了人们的极大关注.超级电容器电极材料种类繁多,按储能原理可以分为双电层超级电容器、赝电容超级电容器和电池型超级电容器三类.双电层超级电容器介绍了几类主流的双电层电极材料的研究现状,同时很多研究者将赝电容电极材料和电池型电极材料混为一谈,本文对这两类材料的不同从原理上进行了区分,介绍各自的代表性材料,最后展望了超级电容器电极材料未来发展趋势.  相似文献   

5.
作为一种绿色环保的新型储能装置,超级电容器近年来发展迅速,电极材料是决定超级电容器性能与制造成本的最主要因素。碳材料因种类多样、价格廉价并具有较高的比表面积、较高的导电率和非常好的化学稳定性而被作为一种重要的电极材料广泛应用于储能元件中,主要包括活性碳、碳微球、碳纳米管、石墨烯等。碳基超级电容器是以碳材料作为主要电极材料的一类电容器。本文详细介绍了不同碳基电极材料的研究发展状况,以及碳基超级电容器的研究与应用进展。  相似文献   

6.
针对传统的分配策略在混合储能系统中存在可用容量差异,且混合储能系统会因为可用容量不够而停运的问题,提出一种采用改进麻雀算法的功率分配策略。该策略将混合储能体系内有效存储容量占总体容量之比最优化作为目标,并利用改进麻雀算法能更好地解决锂电池跟超级电容之间的功率分配问题。并且利用超级电容器高功率、低能量密度的特点,针对实际工作中会发生可用容量不够的问题,提出运用锂离子电池根据转移电流调整超级电容器的残余有效储能容量的方法,并利用模糊控制的转移电流求解方法,使超级电容器始终保持一定的有效储能容量,从而增强了超级电容器的持续运营能力。仿真实验结果表明,该策略具有快速性、稳定性及有效性。  相似文献   

7.
混合型电容器研究进展   总被引:1,自引:0,他引:1  
混合型电容器是一种介于超级电容器和二次电池之间的新型储能装置,是现代电子、交通等行业理想的动力电源.根据电极组合的不同,将混合型电容器分为以下三种类型,它们分别是双电层电容器电极与法拉第电容器电极的组合、传统二次电池电极与双电层电容器电极的组合以及电解电容器的阴极与超级电容器电极的组合.混合型电容器与传统超级电容器相比,在能量密度和工作电压上均得到了较大的提高.着重介绍几种性能优异的混合型电容器及其未来的发展趋势.  相似文献   

8.
《河南科学》2016,(7):1075-1079
为增加电动汽车续驶里程,提出了蓄电池与超级电容器相结合的混合储能模式,设计了能量变换控制系统,试验证明该能量变换控制系统能充分发挥蓄电池与超级电容器的优势,控制能量合理流动与功率有效分配,改善启动与加速性能,快速回收制动能量,延长电动车的续驶里程.  相似文献   

9.
超级电容器电极材料的结构设计   总被引:1,自引:0,他引:1  
超级电容器由于具有功率密度大和循环寿命长的优势受到了广泛的关注.电极材料是超级电容器的核心部分,是发展高性能超级电容器的关键要素.电极材料的组成、晶体结构、微纳结构形态等对其电化学性能具有重大影响.赝电容电极材料的性能与晶体内部的孔道结构密切相关,具有大孔道的电极材料其比容量明显高于只含有小孔道的电极材料.合理调控电极材料微纳结构形态如设计多孔结构、中空结构有利于增大电极的电化学活性表面,进而获得更多的电荷存储量,是提高储能性能的有效途径之一.将赝电容电极材料与导电基体复合生长可以提高材料整体的电导率,进而提高材料的比容量与倍率性能.通过对超级电容器电极材料结构的合理设计进而实现其储能性能的提高已经成为电化学储能领域的研究热点,对于推动超级电容器的发展具有重要意义.  相似文献   

10.
超级电容器作为一种新型的电化学储能元件,以充放电效率高、循环寿命长等优点引起研究者的大量关注,而电极材料是决定超级电容器性能的一个关键性因素。常见的电极材料主要有:碳材料、金属化合物材料和导电聚合物材料三大类。当它们单独作为超级电容器电极材料时,碳材料展现高功率密度和优异的循环稳定性,但其比电容较低;而金属化合物和导电聚合物材料具有高比电容,但由于它们导电性差,致使其循环稳定性和倍率性能较差。因此,超级电容器电极材料的研究关注点是碳材料与其他材料组成复合材料,以制备出兼具高比电容、良好循环稳定性和倍率性能的超级电容器电极材料。  相似文献   

11.
超级电容器是介于可充电电池和传统电容器之间的一种新型储能器件。它具有高功率密度、快速充放电和环境友好等优点。在众多应用于超级电容器的电极材料中,金属有机骨架材料因具有大的比表面积,可灵活调控的组成和结构,是十分理想的电极材料之一,又由于其易于合成、独特的结构和反应特性,也是制备纳米结构电极材料的理想模板之一。以沸石咪唑骨架(zeolitic lmidazolate framework,ZIF)-67为前驱体,采用二水合钼酸钠盐溶液刻蚀的方法成功制备了空心CoMo 层状双金属氢氧化物(layered double hydroxides, LDH)纳米笼结构,同时还讨论了钼酸钠的用量对最终产物形貌和性能的影响。当用作超级电容器电极材料时,所制备的空心Co1Mo5 LDH在1 A/g的时候最多可提供578 F/g的比电容,当电流密度增加到10 A/g时,比电容保持在346 F/g。与活性炭组装成非对称超级电容器后,该储能器件在功率密度750 W/kg时,能量密度最大可达到21.25 W·h/kg。在5 A/g的电流密度下,经过15 000次充放电循环后,仍保持了90%的初始容量。  相似文献   

12.
采用简单的溶剂热法, 一步合成黄铁矿型FeS2纳米微球, 并研究其作为超级电容器电极材料的电化学性能。用 X射线衍射(XRD)、扫描电镜(SEM)和氮气吸脱附法表征材料的结构和形貌, 通过循环伏安(CV)、恒电流充放电(GCD)和电化学交流阻抗(EIS)测试材料在3种常见电解液(6M KOH, 6M NaOH和1M Na2SO4)中的超级电容性能。结果表明, 产物为均匀的黄铁矿型FeS2纳米微球, 直径为300~600 nm, 均呈现明显的赝电容特征。电解液为KOH时, 比电容最高, 电流密度为2 A/g时, 比电容达到732.9 F/g; 电流密度增大到20 A/g时, 比电容仍能达到307.1 F/g。容量保持率为41.9%, 表明所合成的FeS2纳米微球是一种优异的超级电容器电极材料。  相似文献   

13.
Manganese dioxide (MnO2) was prepared using the ultrasonic method. Its electrochemical performance was evaluated as the cathode material for a high voltage hybrid capacitor. And the specific capacitance of the MnO2 electrode reached 240 F·g-1. The new hybrid capacitor was constructed, combining A1/Al2O3 as the anode and MnO2 as the cathode with electrolyte for the aluminum electrolytic capacitor to solve the problem of low working voltage of a supercapacitor unit. The results showed that the hybrid capacitor had a high energy density and the ability of quick charging and discharging according to the electrochemical performance test. The capacitance was 84.4 μF, and the volume and mass energy densities were greatly improved compared to those of the traditional aluminum electrolytic capacitor of 47 μF. The analysis of electrochemical impedance spectroscopy (EIS) showed that the hybrid capacitor had good impedance characteristics.  相似文献   

14.
 柔性全固态超级电容器作为便携式、可穿戴电子的储备电源备受青睐。利用印刷电子大面积、柔性化的独特优势可大大简化柔性电极的制作工艺,以活性炭为活性材料配制油墨,并结合导电银浆,采用丝网印刷方式套印制作了柔性超级电容器电极,并将PVA-H2SO4凝胶作为电解质涂覆在活性电极上组装成柔性共面超级电容器,测试其电化学性能。结果表明,丝印柔性超级电容器电极可成功应用于柔性共面超级电容器。当采用PVA-H2SO4凝胶作为电解质时工作电压可达0.8 V。当充放电电流为0.2 mA时,柔性共面超级电容器的面积比电容达到18 mF·cm-2。  相似文献   

15.
以三嵌段共聚物(F127)为模板剂,间苯二酚(R)和甲醛(F)为碳前驱体,在外加的酸性条件下通过自组装的方法制得了F127/RF复合材料,然后经碳化处理得到具有高度有序孔道结构的介孔炭材料(OMCs),通过XRD、TEM、N2吸/脱附手段(77K低温下)对其进行结构表征。测试结果表明有序介孔炭材料的BET比表面积和总孔体积分别为770m2/g和0.65cm3/g。以有序介孔炭材料为电极制备超级电容器,对其进行直流恒流充放电测试、循环伏安测试和交流阻抗测试,结果显示在电流密度为0.02A/g时OMC-3比容量为130F/g,100次充放电循环后电容量保持率在99%以上。  相似文献   

16.
The recent fast development of supercapacitors,also known scientifically as electrochemical capacitors,has benefited significantly from synthesis,characterisations and electrochemistry of nanomaterials.Herein,the principle of supercapacitors is explained in terms of performance characteristics and charge storage mechanisms,i.e.double layer(or interfacial) capacitance and pseudo-capacitance.The semiconductor band model is applied to qualitatively account for the pseudo-capacitance in association with rectangular cyclic voltammograms(CVs) and linear galvanostatic charging and discharging plots(GCDs),aiming to differentiate supercapacitors from rechargeable batteries.The invalidity of using peak shaped CVs and non-linear GCDs for capacitance measurement is highlighted.A selective review is given to the nano-hybrid materials between carbon nanotubes and redox active materials such as electronically conducting polymers and transition metal oxides.A new concept,"interfacial conjugation",is introduced to reflect the capacitance enhancement resulting from π-π stacking interactions at the interface between two materials with highly conjugated chemical bonds.The prospects of carbon nanotubes and graphenes for supercapacitor applications are briefly compared and discussed.Hopefully,this article can help readers to understand supercapacitors and nano-hybrid materials so that further developments in materials design and synthesis,and device engineering can be more efficient and objective.  相似文献   

17.
随着能源消耗的日渐增长,寻找低成本、环保、寿命长的储能设备迫在眉睫。在超级电容器领域,石墨烯电极材料以其高比电容、优异倍率性能、良好导电性等优势而受到广泛关注。对石墨烯材料的制备方法、电化学性能及相关机制做了总结,目的是研究不同结构的石墨烯材料对超级电容器性能的影响,并找到性能较为优异的石墨烯基材料。最后分析了石墨烯基电极材料发展中存在的问题,并对其研究前景进行了展望。  相似文献   

18.
Supercapacitor is a new type of energy-storage device, and has been attracted widely attentions. As a two dimensional (2D) nanomaterials, graphene is considered to be a promising material of supercapacitor because of its excellent properties involving high electrical conductivity and large surface area. In this paper, the large-scale graphene is successfully fabricated via environmental-friendly electrochemical exfoliation of graphite, and then, the three dimensional (3D) graphene foam is prepared by using nickel foam as template and FeCl3/HCl solution as etchant. Compared with the regular 2D graphene paper, the 3D graphene foam electrode shows better electrochemical performance, and exhibits the largest specific capacitance of approximately 128 F/g at the current density of 1 A/g in 6 M KOH electrolyte. It is expected that the 3D graphene foam will have a potential application in the supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号