首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
针对电动汽车用动力锂离子电池的热安全性问题,以某11 Ah动力锂离子电池为例,进行有限元建模分析,分别对锂离子电池单体在不同充放电倍率、不同环境温度以及不同散热条件下的发热情况进行了分析.结果表明,锂电池放电倍率越高温升越高且温度分布越不均匀,良好的散热模式有助于电池温升的抑制和提高电池的热稳定性.定量化的计算仿真结果符合实际,研究结果为该类电池的建模与仿真提供了借鉴和参考,对锂电池单体的设计优化及锂电池热管理系统的研发具有指导意义.  相似文献   

2.
为了深入研究锂离子电池在工作状态下的热特性,通过试验与理论分析手段,结合红外成像技术与非接触式可视化观测方法,研究了锂离子电池单体在不同放电倍率下的表面温度分布特征及不同荷电状态(State of charge,SOC)下的温度均衡性和不同测量点的温升特性。结果表明:锂离子电池极耳附近区域为主要的产热源,且放电倍率越高,产热量越大;电池温度上升越快,最高温度越高,电池温度均衡性越差; 1C放电时,电池表面的温度梯度以多个类半圆形温区呈现;并以正极区为圆心向整个电池扩展; 2C放电时,初期形成的两个半圆形温区重合为一个以圆弧为下边的类矩形温区,直至扩展到电池下边缘;不同放电倍率下,电池温升速率均呈现先减小后增大的趋势。根据以上分析及研究成果,可以合理改进电池单体结构,设计电池组或电池包散热方案,提高锂离子电池在工作过程中的高效性和安全性。  相似文献   

3.
为实现精确的电池热管理,选取正、负极材料分别为LiyMn_2O_4和LixC_6的层叠式锂离子电池为研究对象,建立了微观-宏观尺度耦合、电化学-热耦合模型,分析了不同放电倍率下单体电池的放电特性及电池包的平均温升、单体电池内部生热机理及变化特性,并详细定量分析了生热量各组成部分所占的比例及变化.分析结果表明:高放电倍率下,电池放电性能变差,温升显著提高,5C放电倍率下,温度升高63,℃.低放电倍率下,可逆热是主要的生热来源,高放电倍率下,液相中的欧姆热是主要的生热来源;相比之下,负极生热量最高,其主要来源于负极的可逆热,隔膜中所占百分比次之,正极最少,其主要来源于正极的不可逆热和欧姆热.  相似文献   

4.
动力锂离子电池的SOC-OCV关系曲线,库伦效率、温度、放电倍率对电池内阻、电压一致性影响和放电倍率与温度的关系特性是动力电池组成组技术和均衡管理的重要参数。通过充放电实验,测得电池SOC-OCV关系、库伦效率-放电电流关系曲线,并通过8阶拟合,可以较准确地反映SOC-OCV函数关系。不同电池单体内阻随温度变化的变化率不同,某个温度下阻值相近的电池单体在其它温度下差异可能较大,极化内阻较欧姆内阻更为明显;电池放电倍率越大,电池组中电池电压的一致性越差。电池的最高温度与放电倍率有关,正极处的温度最高,负极温度与正极的温度差随着放电倍率的增大而增大。  相似文献   

5.
在锂离子电池得到广泛使用的同时,热安全一直是制约锂离子电池进一步发展的重要障碍。通过构建锂离子电池二维电极电-热模型和三维单电池热模型,将二维电极产热分布加载到三维单电池热模型中,同时将三维单电池热模型的温度分布映射到二维电极模型上。对比绝热环境下1C放电和2C放电仿真与实验数据,表面温度与产热率误差均小于5%。基于电极产热分布的热模型可以准确的模拟不同工况下单电池的产热率和温度分布。仿真结果表明产热率在电极上的分布随放电时间而变化;放电倍率对电池温度分布规律没有影响,中心区域温度最高;放电倍率越大,单电池内的温差越大。  相似文献   

6.
为解决锂离子电池组充放电温度过高及温度分布不均的问题,建立了锂离子电池组空气冷却散热模型,对在不同进风速度、温度及放电倍率条件下的双层布置锂离子电池组散热进行了计算。结果表明:进风速度增大,电池组最高温度与温差下降,散热性能增强,当进风速度超过2 m/s时,电池组散热性能强化趋势减弱;进风温度降低,电池最高温度降低,但温差变化不明显;电池组放电倍率增大,电池组最高温度以及温差急剧上升,散热性能降低。  相似文献   

7.
锂离子电池的工作温度需要保持在合适的范围内,才能获得更好的性能和更长的使用寿命。本文提出了一种平面热管与液冷相结合的锂离子电池热管理系统,通过搭建的锂离子电池发热功率测试平台确定不同放电倍率下单体电池的发热功率,建立热管理系统三维有限元模型,分析不同放电倍率、冷却液流量及冷却液流动方向对散热性能的影响。结果表明,在3 C放电倍率下,最高温度可以控制在50 ℃以下。与相同进液方向相比,不同进液方向下电池包最大温差降低了17.30%。  相似文献   

8.
为了改善车用锂电池模组在高温高倍率工况下的热均衡性,根据圆柱形锂电池的传热特性,建立了18650锂电池单体的三维热模型,并完成40 °C环境自然对流下的热特性仿真,并通过温升试验验证了生热模型的可靠性. 在此基础之上,针对某型纯电动汽车的动力电池组,提出了一种夹套式电池模组冷却系统,利用Fluent研究了40 °C环境下冷却液流量、冷却液温度和放电倍率对电池组散热均衡性的影响. 结果表明:增加冷却液流量可以有效降低电池组最高温度、最大温差及电池自身温差,改善电池间的温度均匀性;但当入口流量增至0.03 kg/s后,对电池组散热性能的改善效果十分有限;降低冷却液温度后,电池组最高温度下降,但电池组最大温差与单体电池间温差不断上升,单体电池自身最大温差略有降低;当放电倍率增大时,电池组最高温度与最大温差均不断上升,单体电池间温差以及电池自身温差显著增大,电池组热均衡性变差.   相似文献   

9.
针对锂离子电池单体成组后温度场的非均匀性导致的热不一致性问题,以及高温下电池单体间的热交互引发的热安全性问题,采用仿真与试验相结合的方式,基于锂离子电池生-传热机理,设计了电池单体单独成组、电池单体之间夹隔泡沫棉、电池模组底部布置液冷板3种递进式散热方案,并对液冷板进行了优化设计.采用有限元软件STAR-CCM+,仿真分析了3种方案下电池模组在不同放电倍率时的温度分布.结果表明:增加泡沫棉可减少电池间的热交互,进而提高电池单体间的热均衡性.在结合泡沫棉、导热板以及优化后(采用液冷管道串-并联组合方式)的液冷系统散热条件下,电池模组以2C倍率放电时最高温度为35.08℃,最大温差仅为4.85℃.研究结果可为电池热管理散热系统结构设计提供一定的理论基础.  相似文献   

10.
针对纯电动汽车在放电过程中发热严重的问题,对不同放电倍率下电池的发热情况进行探究.建立一个准确的电池发热模型.首先进行不同温度下的内阻试验,采用密集的温度区间进行试验,探究不同温度对电池内阻的影响,验证了电池内阻随温度变化的规律,然后通过CATIA建立单体电池3维模型,导入到ICEM中划分网格,在网格质量达到标准的前提下,最后通过FLUENT软件对锂电池进行热流场的分析,分别模拟不同放电倍率下电池发热情况,并进行试验验证.结果表明:放电倍率对电池的温升影响很大,大放电倍率下的电池温升更快,温度更高.  相似文献   

11.
变接触面液冷系统的电池模组温度一致性研究   总被引:1,自引:0,他引:1  
为了使电池系统单体间的温度具有较好的一致性,设计了一种在单体间隙中填充铝柱的液冷热管理系统,建立了单体的电化学-热耦合模型,对比研究了不同入口流速、不同截面边长和高度组合的铝柱液冷系统对电池热性能的影响.研究结果表明,截面边长和高度梯度变化的铝柱液冷系统的冷却性能和单体间的温度一致性都要优于截面边长和高度为定值的系统.在放电倍率为3 C,入口流速为0.10 m/s时,此组合方式下电池模块中单体间的最大温差保持在3.72℃以内,满足电池系统热管理的需求.最后,针对此模型对不同放电倍率进行了仿真验证,结果显示单体间温度具有较好的一致性.  相似文献   

12.
为综合分析影响电池性能的热环境因素,利用恒温油浴工况、近似绝热工况分别模拟有无热管理措施的动力电池组工作热环境,对松下18650锂电池进行了充放电性能与温度相关性的基础测试,研究了电池工作热条件、电池状态及放电倍率对其充放电性能的影响。研究结果表明:无论在何种热条件下,电池充电容量总是小于上次放电容量;当充电温度低于20℃时,电池充电容量随着充电温度的降低迅速衰减,若前一次放电倍率为0.5C、充电温度从20℃降至-10℃时,充电容量衰减12%;较高的放电温度能有效抵消电池大倍率放电引起的容量损失,当电池在40℃环境中以2C倍率电流放电时,其容量衰减仅为3.7%;当电池放电倍率较小,且工作温度高于30℃时,温度对电池放电性能的影响逐渐减小;环境温度较低时,电池放电容量随温度降低迅速衰减,当电池放电温度为-10℃时,其2C倍率放电容量衰减高达50%。本研究期望对高效、可靠及合理的电池热管理系统的设计提供理论依据。  相似文献   

13.
以26650型圆柱形磷酸铁锂离子电池为原型,建立电化学-热耦合模型。研究放电倍率对电池热行为的影响。结果表明:低倍率下电池处于吸热状态,电池内部温度反而低于外部;高倍率下电池一直是放热状态,内部温度一直高于外部。为了控制高倍率放电过程中电池模块的温度,比较讨论风冷散热和相变材料散热系统,最终发现具有0.01 m/s的微胶囊型相变材料散热系统降温效果最为显著,电池模块温度被控制在50℃以下。  相似文献   

14.
电动汽车锂离子电池组内散热特性数值模拟研究   总被引:3,自引:3,他引:0  
锂离子电池组涉及数据规模庞大,传统方法无法有效实现对其散热特性的研究,为此,提出一种新的通过数值模拟方式研究电动汽车锂离子电池组内散热特性的方法。介绍了锂离子电池组工作原理,分析了锂离子电池的充放电过程。通过雷诺平均法进行雷诺时均处理,获取电动汽车锂离子电池组内散热控制方程和湍流方程。介绍了初始和边界条件,通过CFD实现控制方程的求解。依次进行了锂离子电池表面散热特性数值模拟、不同风孔大小下电池组散热特性数值模拟、不同倍率充放电后电池组散热特性数值模拟以及不同环境温度下电池散热特性数值模拟。实验结果表明,锂离子电池中心垂直截面和上下壁面的温度分布均为中心最高,壁面较低,壁面温度梯度大,热量散失速度快;在风孔大小和出口大小相近,充放电倍率为1C时,电动汽车锂离子电池组内散热性最佳;环境温度越低,电池温度升高幅度越大,散热性能越好。  相似文献   

15.
锂离子电池组涉及数据规模庞大,传统方法无法有效实现对其散热特性的研究,为此,提出一种新的通过数值模拟方式研究电动汽车锂离子电池组内散热特性的方法。介绍了锂离子电池组工作原理,分析了锂离子电池的充放电过程。通过雷诺平均法进行雷诺时均处理,获取电动汽车锂离子电池组内散热控制方程和湍流方程。介绍了初始和边界条件,通过CFD实现控制方程的求解。依次进行了锂离子电池表面散热特性数值模拟、不同风孔大小下电池组散热特性数值模拟、不同倍率充放电后电池组散热特性数值模拟以及不同环境温度下电池散热特性数值模拟。实验结果表明,锂离子电池中心垂直截面和上下壁面的温度分布均为中心最高,壁面较低,壁面温度梯度大,热量散失速度快;在风孔大小和出口大小相近,充放电倍率为1C时,电动汽车锂离子电池组内散热性最佳;环境温度越低,电池温度升高幅度越大,散热性能越好。  相似文献   

16.
针对锂离子电池的电-热-机耦合特性,设计了一套耦合特性综合测试系统,进行了电池不同倍率充放电工况下电-热-机耦合特性的测试与分析,以探究电池电特性、形变、温度的时间演变规律与空间分布特性,可以得到电池荷电状态(state of charge,SOC)-形变曲线具有明显的分段特性,可以辅助磷酸铁锂电池SOC估计的修正。基于该系统测试结果研究了电池充放电过程形变产生的机理,并进行了电池热膨胀系数的参数辨识。实验结果表明:高倍率放电时,在放电初期和中期电池边缘部分膨胀,放电后期收缩,而中心位置在放电初期和中期收缩,后期膨胀;低倍率放电时,电池表现为放电初期和后期整体收缩,中期整体膨胀。研究结果可为电池内部电-热-机耦合特性的理论分析与测试管理提供依据。  相似文献   

17.
软包装锂离子电池性能研究   总被引:1,自引:0,他引:1  
研究了以塑料包装取代金属外壳所实现的新型软包装锂离子电池的电化学性能.从软包装锂离子电池的倍率放电性能、电池的高低温放电能力和充放电循环稳定性等方面的研究表明,软包装锂离子电池具有良好电化学性能.软包装锂离子电池既不同于金属外壳锂离子电池,也不同于聚合物锂离子电池,是锂离子电池的一种新型设计.  相似文献   

18.
曲杰  李治均  王超 《科学技术与工程》2020,20(22):9210-9216
为了测试充放电过程中锂离子电池膨胀力及膨胀位移,本文拟开发相应的测试试验台。该实验台由充放电系统、环境控制系统、测试系统、数据采集系统等四部分组成。为了模拟电池对测试装置响应,提出了一种表征充放电过程中锂电池热-机-电耦合作用的等效方法。基于开发的试验台,测试不同放电倍率下电池膨胀位移-SOC曲线及电池膨胀力-SOC曲线,使基于温度-电流电压-力的电池管理系统的开发成为可能。  相似文献   

19.
针对目前车用锂离子电池散热困难等问题,以10A.h车用动力锂离子电池组为研究对象,基于无机超导热管散热方法建立电池组三维热仿真模型,在不同工况下对用不同直径的无机超导热管进行模拟仿真。仿真结果表明:达到稳定状态后,无机超导热管散热方式能确保电池单体的温度控制在20~50℃;当放电电流为10 A且放电时间为10 min时,无机超导热管散热后的车用锂离子电池温度不超过48℃,散热效果较好,满足设计要求。  相似文献   

20.
为了更好地满足航空、军事以及能源器件对于高功率化学电源的需求,对LTT65系列电池进行了优化,控制原有电池其他参数不变的同时,使得内部颗粒变小,优化后的电池对于放电倍率进行了提升。针对改进后的电池,首先对于电池的放电性能进行测试,得到放电深度的具体数值,其次根据电池放电后的电压回升问题通过HPPC(hybrid pulse power characteristic)方法对于内阻进行测试和计算。结果表明:电池在高SOC(state of charge)状态下内阻伴随着放电率的增加而减小,电池在较低SOC状态下内阻增加,呈现出一定的复杂趋势。最后对于该倍率状态下的电池温升进行分析,得到了电池温度会随着电池放电倍率的增加将会出现拐点的结论,电池的温度拐点出现在45℃,最大温度值为63℃,温升值为38℃,而后根据实验结果对于电池不同倍率下的温升、热功率等参数进行测定,对于电池的放热特性进行了整体研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号