首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
水平荷载作用下嵌岩群桩的受力主要受桩间距、嵌岩深度、桩径、土层厚度的影响,借助数值模拟来探究这些因素对基桩内力、变形的作用。基于ANSYS,介绍土岩本构模型及力学参数,对水平受荷群桩进行数值模拟,采用正交试验来研究各因素对基桩变位的影响。结果表明:存在临界桩间距,在该临界桩间距内峰值弯矩、桩底剪力与桩间距正相关;桩底弯矩、剪力随嵌岩深度增大而增大;基桩弯矩、剪力绝对值随桩径增大而增大;基桩弯矩峰值位置随土层厚度增大而下移;土层厚度是影响群桩变位的主要因素。  相似文献   

2.
黏性土抗滑桩桩间土拱分析及合理桩间距研究   总被引:1,自引:1,他引:0  
针对桩间土拱效应,对黏性土抗滑桩合理桩间距的确定进行分析。以拱脚最不利位置土体莫尔库伦强度条件及桩土接触面任一点土体剪应力不大于桩体提供的最大抗滑力为控制条件,并以作用于桩体及桩间土体的滑坡推力不大于抗滑桩承担的绕流阻力为第三个控制条件推导出抗滑桩最大桩间距的计算公式。该公式具有力学性质明确,计算简便,并对一工程实例进行计算,该公式计算结果较为合理,具有工程参考价值。  相似文献   

3.
为研究排架结构码头阶梯形岸坡桩土相互作用以及水位变化对桩土作用的影响,进行了大型模型试验模拟。根据试验数据,对排架结构桩周土体的侧向应力分布、排架桩身的受力特性以及水位变化的影响进行了讨论。结果表明:水平荷载作用下,排架各桩桩周土体侧向应力分布相似,呈三角形分布。桩周土体侧向应力随荷载的增加而增大;排架结构对岸坡有遮帘效应,起到一定的抗滑作用;排架桩身弯矩值随荷载的增加逐渐增大,桩身弯矩的大小与桩所处的位置有很大关系;水位越高,桩周土体侧向应力越大,桩身弯矩也越大,码头整体稳定性越差。  相似文献   

4.
为研究过渡段地基加固作用(桩间距为3d,4d,5d和6d,d为CFG桩径)对邻近桥台桩工作性状的影响,进行离心模型试验及三维数值模拟。研究结果表明:过渡段地基加固作用对桥台桩受力变形影响表现为在竖向上利用CFG桩荷载深层传递作用改变软土地基沉降变形特性,在水平方向上CFG桩对软土的侧向流动起显著阻拦作用;随着CFG桩间距增大,受负摩阻力作用的桥台桩中性点位置下移,最大轴力增大,桩端阻力随之增大;桩身弯矩最大值随CFG桩间距增加而增大,其位置(最危险截面)从桩长1/2处逐渐转移至桩顶;桩身剪力分布大致呈"反S"型,2处拐点分别位于土层界面及CFG桩端平面,且随着CFG桩间距增加,土层界面处桩身剪力增大而CFG桩端平面处剪力减小;桥台桩水平位移随桩间距增加以一固定点呈旋转式增大,桩身挠曲也越明显,而桥台转角及水平位移随桩间距近似线性增加;与天然地基相比,CFG桩在一定程度上限制了路基荷载下土体蠕变特性的发挥。  相似文献   

5.
碎石桩复合地基桩土应力比的时效分析   总被引:2,自引:0,他引:2  
对碎石桩复合地基的时效特性进行研究,根据桩体及桩间土体应力随时间的变化规律,考虑碎石桩复合地基中土体径向、竖向双向排水固结的特点,基于线弹性状态下桩体及桩间土体的应力一应变关系,分别给出考虑时效的桩体与桩间土体竖向应力计算方法,进而建立桩土应力比时效计算的双曲线模型,得到考虑时效的桩土应力比计算方法.研究结果表明:碎石桩复合地基桩土应力比随时间呈双曲线变化,其值与不考虑时效时相比可增大1倍,时效非常明显,在具体计算时不容忽视;双曲线时效模型能够有效地模拟碎石桩复合地基桩土应力比的时效规律;利用桩土应力比时效模型对某工程实例进行计算、分析,理论桩土应力比随时间的变化曲线与实测曲线较吻合.  相似文献   

6.
采用模型试验研究桩体复合地基受压过程中侧向约束桩工程特性。研究结果表明:桩侧土压力沿深度先增大、后减小,峰值在离土顶面0.22H~0.33H(H为地面以下桩长)处,因加载而快速增大;轴力P-深度z曲线呈倾斜的"S"形,桩身上部受拉、下部受压,峰值拉力出现在离土顶0.15H处,峰值压力出现在离土顶0.81H~0.92H处;摩阻力τ-深度z曲线整体上呈倾斜的"C"形,上段出现正摩阻力,下段出现负摩阻力,离土顶面0.18H处是中性点,峰值负摩阻力出现在离土顶面0.7H附近;弯矩M沿深度z先增大、后减小,有1~2个峰值,上部峰值出现在离土顶0.37H附近,下部峰值出现在离土顶0.59H~0.70H附近;间距小的边桩正轴力(包括峰值)和轴力零点埋深变化范围及负摩阻力峰值最大,间距大的边桩次之,中桩的最小;荷载达到复合地基压力Q-沉降s曲线拐点荷载之前,中桩弯矩最大,间距大的边桩弯矩次之,间距小的边桩弯矩最小;超过该拐点荷载之后,间距大的边桩弯矩最大,中桩弯矩次之,间距小的边桩弯矩最小;间距大的边桩的弯矩M与土顶面距离z曲线有1个峰值,而中桩和间距小的边桩有2个峰值。  相似文献   

7.
根据相似理论建立刚性桩复合地基群桩模型,测试其在静力作用下的变形特性、不同桩位桩体和桩间土的受力特性.静力试验表明:褥垫层能够调节桩-土荷载分担比,不同桩位桩身的应力,角桩最大,其次是边中桩,中桩最小.研究了在动力作用下刚性桩不同桩位的弯矩和剪力值随桩身分布的特性以及箱体的位移时程曲线.动力试验表明:无论是弯矩值还是剪力值都是角桩最大,其次是边桩,再次是中心桩;刚性桩复合地基具有良好的抗震性能.  相似文献   

8.
目的研究斜插式桩板墙在不同桩间净距土压力分布情况下受力性能.方法结合实际工程中斜插式桩板墙原型,利用有限元软件ABAQUS建立桩间距分别为250 mm、300 mm、350 mm、400 mm、450 mm五种斜插桩板墙有限元模型,分析对比了五种模型的桩后水平土压力、板后水平土压力、板后竖向土压力、板后摩擦土拱、桩结构受力、板结构受力等的变化规律.结果同一深度下,桩后土体Y轴方向应力随着桩间净距增大逐渐增大;受到模型桩间土拱、模型板间土拱、土摩擦角的综合影响,板后Y方向土体应力呈非线性分布,且影响程度随板厚土体深度变化;板X轴方向应力随桩间净距增大而增大;板两端X轴方向应力大于板中间X轴方向应力.结论随着桩间距增加,桩后土体Y轴方向应力、桩结构受力、板结构受力均逐渐增大.  相似文献   

9.
为研究倾斜桩的水平受拉响应特征,在模型砂土中设置0°、10°、20°倾斜桩及桩底嵌岩20°倾斜桩,桩顶施加水平拉力,拉力方向与倾斜方向相反,测试4根模型桩的水平位移、应变片与土压力盒应变,获得桩身水平位移、弯矩、土抗力和p-y曲线特征随倾斜角和桩底约束条件的变化规律. 结果表明:1)桩顶水平受拉时,随着倾斜角的增加,负斜桩顶部水平位移逐渐增大,弯矩峰值随之增大,而土抗力峰值逐渐减小,土抗力峰值点位置逐渐降低,单桩的水平承载力随之降低,抗弯能力减小;2)随着桩底约束程度的提高,负斜桩顶部水平位移减小,桩身弯矩峰值、土抗力峰值减小,单桩水平承载力增大,抗弯能力增强;3)水平荷载作用下,本模型的负斜桩破坏模式为“转动+弯曲”,转动点位置随倾斜角的减小或桩底约束程度的提高而下降;4)0°~20°负斜主动桩p-y曲线可采用p/pub= α(y/y50) β进行拟合,倾斜角与桩底约束程度对α影响不大,倾斜角对β值变化幅度影响较小,β值变化幅度随桩底约束程度提高而降低.  相似文献   

10.
基于实际基坑桩锚支护工程,围绕桩身内力与基坑变形关键指标,探讨其与锚索位置之间内在关系,研究发现:桩身弯矩与剪力均随锚索间距的增大而减小,且其随第一排锚索位置的下移而减小;桩顶水平位移随锚间距影响较小,而坑顶地表沉降则随其增大而增大,同时两者均随第一排锚索位置的下移而增大;与锚索间距相比,第一排锚索位置对桩身内力和基坑变形的影响更为显著.鉴此,进一步给出了桩锚基坑支护锚索布设方案的建议,其研究结果可为其他类似工程提供参考与借鉴.  相似文献   

11.
当桥梁桩基设置在滑坡上时,常采用抗滑桩作为支挡结构,抗滑桩和桥梁桩基之间存在着相互作用。本文以子-姚高速崖坬沟3号大桥为研究背景,对桥梁桩基及抗滑桩的桩顶位移及桩侧土压力进行监测,分析抗滑桩与桥梁桩基相对位置改变对桥梁桩基受力变形的影响。同时,基于ABAQUS软件分析前后排抗滑桩不同埋置位置下抗滑桩对坡脚桥梁桩基及坡中桥梁桩基的影响。现场监测数据表明抗滑桩与桥梁桩基相对位置对桥梁桩基水平位移及桩侧土压力均有影响,在抗滑桩距离桥基8m和4m时,间距8m加固效果更佳。通过数值模拟,发现后排抗滑桩距离桥梁桩基过远或过近均对桥梁桩基加固效果有限,抗滑桩加固桥梁桩基存在一个最佳距离,对于坡脚桥梁桩基抗滑桩加固最佳距离为3h-5h(h是抗滑桩沿滑坡走向的截面长度),对于坡中桩抗滑桩加固最佳距离为2h-4h,而前排抗滑桩离桥基越近其加固效果越好。如果桥梁桩基在坡体中上部时,桥梁桩基前部土体较多可能会形成牵引式滑坡,需设置前排抗滑桩进行支护,综合考虑确定合理的加固位置。  相似文献   

12.
为充分探究倾斜抗滑桩护坡承载特性,弥补倾斜抗滑桩在相应试验研究方面的不足,采用模型试验方法,对倾斜与竖直抗滑桩支护结构的受力状态、坡顶沉降位移、桩身内力变化规律和桩后土压力进行测量对比分析。试验结果表明倾斜桩体桩后土压力随着桩体埋深的增加先增大后减小,其形态类似于抛物线型分布;桩体在同一位置不同加载荷载下,土压力值随着荷载的增大而增大,与竖直桩体相比其受力更加合理,更能充分发挥抗滑桩护坡作用。桩身弯矩形态近似呈“S“形分布,桩身弯矩随着桩体埋深的增加先增大,后出现弯矩重分布现象反向增大最后减小,在桩体埋深为35cm处,弯矩值出现重分布现象;桩体在同一位置不同加载荷载下,弯矩值随着荷载的增大而增大且桩顶处弯矩值大于桩底弯矩。倾斜比竖直桩体在相同状况下所受弯矩值明显小很多,即能承受更大的土体作用而不发生破环,从而使护坡效果明显增强,为在实际工程中采用与坡面大致垂直的抗滑桩比竖直抗滑桩能达到更好的护坡效果提供了理论指导。  相似文献   

13.
边坡加固工程中抗滑桩间距的确定   总被引:3,自引:1,他引:3       下载免费PDF全文
考虑抗滑桩桩间土拱效应,以桩侧与边坡土体间的摩阻力及黏着力承担滑坡推力的静力平衡条件和土拱跨中与拱脚处截面的强度条件共同控制,建立了抗滑桩间距的计算公式.该公式适当考虑了滑坡推力分布的影响.工程实例表明,该抗滑桩间距计算公式的计算结果较为合理,具有一定的工程应用价值.  相似文献   

14.
为研究强震作用下液化场地桩-土非线性动力相互作用特性,依托海文大桥实体工程,利用Midas/GTS有限元软件,建立了桩-土相互作用模型,分析了地震动峰值为0.35g时4种类型地震波作用下桩身加速度、桩身位移、桩身弯矩及剪力等动力响应,并根据计算结果对桩基在强震作用下的安全进行了评价.结果表明:在0~10 m的可液化粉细砂层,桩身加速度峰值迅速增加,并在桩顶处达到最大,桩顶加速度出现峰值的时刻与桩底相比均呈现滞后现象,最大滞后时间为2.14 s;不同类型地震波作用下,在可液化的粉细砂层,Kobe波产生的桩顶位移最大,El-Centro波次之,5010波产生的桩顶位移最小;桩身弯矩峰值均出现在液化层和非液化层分界处,桩身剪力峰值均出现在地下0~10 m的可液化土层之间,Kobe波作用时,桩身弯矩和剪力峰值均最大,El-Centro波次之,5010波最小;地震动强度为0.35g,5010、5002、El-Centro地震波作用时,桩身弯矩及剪力峰值均未超过桩身截面抗弯和抗剪承载力,Kobe地震波作用时,桩身弯矩峰值小于桩身截面抗弯承载力,而桩身剪力峰值超出桩身截面抗剪承载力的68.6%,桩基础桩身强度不满足抗震要求,建议增加桩基础纵向配筋.  相似文献   

15.
复活古滑坡治理及微型抗滑桩承载机理   总被引:2,自引:0,他引:2  
通过对古滑坡复活原因的分析和数值模拟,采取以微型抗滑桩为主并结合压力注浆、卸载、反压等工程措施的设计方案,使复合古滑体重新处于稳定状态,确保了道路主线路基及路堑边坡工程的正常施工和长期稳定;结合工程实际对微型抗滑桩进行了力学分析和数值模拟计算,证明其最大轴向力出现在桩体中间位置,而最大剪应力则位于抗滑桩高度的1/3~2/5处.  相似文献   

16.
基于现场测试结果,采用三维有限元技术分析低承台桥台桩基在台后路基填土过程中桩基沉降、桩身弯矩、桩顶水平变形、桩身剪力和桩侧附加水平挤压力随台后填土荷载增加的变化规律.研究结果表明:计算结果与实测结果吻合较好:桩顶水平变形和桩身最大弯矩随填土荷载的增加近似呈线性增加:深度方向20m范围内,桩身剪力图呈“S”型,桩侧附加水平挤压力图呈抛物线型.低承台桥台桩基力学模型等同于桩项和桩端嵌入一定深度、具有一定变位的超静定梁结构.本文所得结论可以为桥台桩基的设计和施工提供参考.  相似文献   

17.
建立了独立式、连系梁式及承台式微型桩支护体系模型,探讨了不同布置形式及桩间距下,各类型微型桩体系的受力特性.研究结果表明,相同荷载下承台型微型桩抗滑效果好,其最大桩身弯矩分别为独立式和连系梁式微型桩的1.36倍和1.35倍;梅花形布桩形式下,同类型微型桩的桩身最大弯矩约为矩形布桩形式微型桩的1.02倍;桩间距取1.5~2.0m更有利于微型桩体系抗滑效果的充分发挥;最佳的微型桩布桩形式为承台式微型桩呈梅花形布桩,桩间距为1.5~2.0m.  相似文献   

18.
抗滑桩加固土坡效果及合理桩位的三维有限元分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于ABAQUS有限元软件,采用弹塑性有限元强度折减法对抗滑桩加固的土坡进行三维数值分析.考虑桩-土相互作用,探讨强度折减法中以迭代不收敛和特征点位移拐点作为边坡失稳判据的局限性.对于抗滑桩加固的边坡,提出采用特征点位移拐点并结合水平位移限值作为边坡临界破坏的评价标准,分析边坡潜在最危险滑动面和安全系数随抗滑桩桩位变化的规律,从数值模拟角度探讨边坡加固中桩位的合理设置位置.  相似文献   

19.
根据斜坡段桥梁基桩的水平承载特性,建立了考虑斜坡效应的桩-土相互作用模型及挠曲微分方程;基于m法和传递矩阵法,推导了桩身内力与位移分析的传递矩阵解答;通过模型试验,测得了黏土和砂土斜坡地基比例系数,拟合得到了斜坡地基比例系数与坡度间的关系式,验证了理论解答的合理性;以某工程实例为基础,分析了斜坡坡度和桩顶水平荷载对斜坡基桩受力与变形的影响.研究表明:斜坡地基比例系数随桩土交界面处桩身水平位移增大而呈非线性关系减小;黏土和砂土斜坡地基比例系数均随斜坡坡度增加而减小;基桩桩顶水平位移和桩身最大弯矩均随斜坡坡度和桩顶水平荷载增加而增大;当斜坡坡度由0°增加至60°时,桩顶水平位移约增大86.4%,桩身最大弯矩约增大4.6%,桩身最大弯矩位置约下移2.0 m;桩顶水平荷载每增加50 kN,桩顶水平位移平均增大48.5%,桩身最大弯矩平均增大41.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号