首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
丛书文集   1篇
综合类   4篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
排序方式: 共有5条查询结果,搜索用时 11 毫秒
1
1.
为探明山区沟谷地形对高填方盖板涵受力特性和填土沉降变形特性的影响,通过离心模型试验,选用自主研发的能够反映地形-涵洞-填土相互作用的模型试验平台,分析了不同沟谷宽度B和不同沟谷坡度α下盖板涵的涵-土界面土压力、涵顶填土沉降变形、涵洞结构内力以及涵顶垂直土压力集中系数K_s的变化特征,并提出了相关的工程技术建议。研究结果表明:涵-土界面土压力、涵顶垂直土压力集中系数K_s与沟谷宽度呈正相关,与沟谷坡度呈负相关;盖板涵涵顶土体沉降变形呈W形分布,随沟谷宽度的增大,涵顶土体内外沉降差δ逐渐增大;随沟谷坡度的增大,涵顶土体内外沉降差变化为δ→0→-δ;沟谷宽度为1.5D~5D时(D为涵洞计算跨径),对应等沉面高度变化范围为12.2~13.7 m;沟谷坡度为0°~60°时,对应等沉面高度变化范围为12.5~13.7 m,提出可用等沉面高度界定高填方涵洞,可取14 m作为其界定高度;盖板涵盖板下缘、涵底上缘中部受拉应力,盖板下缘为盖板涵结构受力最不利位置;高填方盖板涵施工时应充分利用原有地形,在确保边坡稳定的前提下,尽量保留边坡,或人为反开挖施工,增加沟坡、减小沟宽,坡体以沟谷宽度B≤3D、沟谷坡度α≥45°为宜。  相似文献   
2.
为探明高填方涵洞地基承载力与稳定性,提出填土-涵洞-地基共同作用下的地基承载力确定方法,通过现场试验分析涵洞基底土压力随填土高度的变化规律,揭示传统涵洞地基承载力确定方法的不足,利用有限元软件研究不同地基土质下高填方涵洞受力特点和地基应力与变形特性,确定高填方涵洞地基的破坏模式,建立地基工后沉降20 cm为控制指标的地基承载力确定方法,将不同填高、地基土质下的基底压力与规范公式计算值及沉降控制值进行对比,验证此方法的可靠性。研究结果表明:传统涵洞地基承载力确定方法低估了高填方涵洞的地基承载力;涵洞和一般路堤的不均匀沉降导致涵顶应力集中,造成跳车现象;涵洞基底压力大于一般路堤,地基土强度越高,涵洞基底压力与一般路堤压力的比值越大;在一般土质与较好土质下,涵洞地基的稳定性要高于一般路堤断面的稳定性,地基土的破坏形式为典型的局部剪切破坏形式;按地基工后沉降20 cm控制地基承载力符合实际情况,规范公式偏于保守。  相似文献   
3.
为研究强震作用下液化场地桩-土非线性动力相互作用特性,依托海文大桥实体工程,利用Midas/GTS有限元软件,建立了桩-土相互作用模型,分析了地震动峰值为0.35g时4种类型地震波作用下桩身加速度、桩身位移、桩身弯矩及剪力等动力响应,并根据计算结果对桩基在强震作用下的安全进行了评价.结果表明:在0~10 m的可液化粉细砂层,桩身加速度峰值迅速增加,并在桩顶处达到最大,桩顶加速度出现峰值的时刻与桩底相比均呈现滞后现象,最大滞后时间为2.14 s;不同类型地震波作用下,在可液化的粉细砂层,Kobe波产生的桩顶位移最大,El-Centro波次之,5010波产生的桩顶位移最小;桩身弯矩峰值均出现在液化层和非液化层分界处,桩身剪力峰值均出现在地下0~10 m的可液化土层之间,Kobe波作用时,桩身弯矩和剪力峰值均最大,El-Centro波次之,5010波最小;地震动强度为0.35g,5010、5002、El-Centro地震波作用时,桩身弯矩及剪力峰值均未超过桩身截面抗弯和抗剪承载力,Kobe地震波作用时,桩身弯矩峰值小于桩身截面抗弯承载力,而桩身剪力峰值超出桩身截面抗剪承载力的68.6%,桩基础桩身强度不满足抗震要求,建议增加桩基础纵向配筋.  相似文献   
4.
针对超大厚度Q2离石黄土场地,选用大直径长摩擦型桩基桩筏联合基础是此类地区建设超高建筑的不二选择。因此根据在超大厚度黄土场地所进行的单桩静载荷试验的试验结果,基于减沉桩原理,根据长桩控制变形、短桩提供承载力的基本思路提出长短桩组合桩基础设计思想。结合试验结果,分别确定了两种直径相同(d=800mm),长度不同(L_1=40m,L_2=20m),承载力不同的两种桩型,通过上部结构荷载估算确定了长短桩数量,根据相关规范,采用简化模型,利用Ansys有限元软件对全短桩、全长桩及长短桩组合桩基础在竖向荷载作用下的变形特性进行三维有限元分析。结果表明,长短桩组合桩基础不仅可以大量减少长桩用量,而且可有效地控制基础整体沉降和差异沉降,显示其良好的应用前景。  相似文献   
5.
深厚软基路桥过渡段处理不当而引发的问题逐渐突显,为从设计优化角度解决深厚软基区路桥差异沉降变形问题,基于宁波市北仓区静载荷试验实测的7根桩基础的P-s曲线,分析了宁波深厚软基区桥梁桩基础的承载特性;通过数值模拟,建立了不同软土厚度下桩基础的三维有限元模型,研究了深厚软基区桥梁桩基础穿越软土层和未穿越软土层时的承载性能;采用回归分析法,分别以桩顶位移控制量40 mm、60 mm建立了深厚软基区桥梁桩基础穿越软土层和未穿越软土层时的承载力计算公式.研究结果表明:桩基P-s曲线呈缓变型,无明显向下转折段.桩顶沉降最大达到49.6 mm,任一级沉降均未超过上级沉降的5倍,深厚软基区的桥梁桩基存在设计承载力安全储备过大的问题;当桩穿越软土层时,桩承载力随软土层厚度增加呈线性减小,桩未穿越软土层时,软土厚度对桩承载力影响不明显,桩长30 m的桩基承载力在软土厚度为30 m时出现明显的分界点;根据静载试验和有限元模拟结果,回归建立了桩顶位移控制量40 mm、60 mm时桩的承载力公式,并通过工程实例验证了公式的可行性;提出了深厚软基区公路桥梁的桩长优化公式及其适用条件,并给出了深厚软基区公路桥梁桩长折减系数α取值表.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号