首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过6个双面叠合试件剪切性能试验,研究不同界面连接钢筋形式下叠合面的抗剪特性.试验结果表明,双面叠合构件均发生叠合面的剪切破坏,叠合面的裂缝出现过程并不同步,在叠合面裂缝出现之前,叠合试块整体性保持良好;叠合无筋构件呈明显的脆性破坏特征,破坏过程中改进的箍筋连接构件的延性优于传统的桁架连接构件;通过理论分析确定叠合面的破坏机理即新老混凝土界面的极限抗剪强度由混凝土黏结力、摩擦力和界面钢筋的销栓力共同作用,然而极限状态时界面的黏结力已经有一定程度的破坏,在计算极限承载力时并不能用三者的最大值简单相加.  相似文献   

2.
双面叠合试件界面抗剪性能试验研究   总被引:1,自引:1,他引:0  
通过6个双面叠合试件剪切性能试验,研究不同界面连接钢筋形式下叠合面的抗剪特性.试验结果表明,双面叠合构件均发生叠合面的剪切破坏,叠合面的裂缝出现过程并不同步,在叠合面裂缝出现之前,叠合试块整体性保持良好;叠合无筋构件呈明显的脆性破坏特征,破坏过程中改进的箍筋连接构件的延性优于传统的桁架连接构件;通过理论分析确定叠合面的破坏机理即新老混凝土界面的极限抗剪强度由混凝土黏结力、摩擦力和界面钢筋的销栓力共同作用,然而极限状态时界面的黏结力已经有一定程度的破坏,在计算极限承载力时并不能用三者的最大值简单相加.  相似文献   

3.
通过对7个管端有竖向裂缝的拉挤型GFRP管进行轴压试验,研究了管端竖向裂缝型初始缺陷的位置及长度对拉挤型GFRP管的轴压性能影响,得到了极限承载力,荷载—位移曲线和应力—应变曲线,并分析了管端裂缝长度和位置对拉挤型GFRP管极限承载力,位移及初始刚度的影响。试验结果表明:管端竖向裂缝型初始缺陷对GFRP管的破坏模式和破坏现象没有明显的影响,主要表现为脆性破坏,且初始缺陷处无明显破坏;初始缺陷的影响主要在荷载作用前期,且对试件初始刚度影响较小;裂缝在中间位置处对试件的极限承载力的影响比裂缝在管端角部试件的极限承载力的影响大。  相似文献   

4.
配置组合封闭箍筋叠合框架梁端抗震性能试验   总被引:1,自引:1,他引:0  
通过6个试件的低周反复加载试验,研究了配置HRB500纵筋和组合封闭箍筋的叠合混凝土框架梁端的破坏形态、滞回曲线、骨架曲线、延性等抗震性能以及极限承载能力.结果表明:叠合试件的叠合面和根部结合面出现开裂和滑移,其滞回曲线捏拢,耗能、极限承载力和位移延性系数均小于整浇试件;叠合试件的位移延性系数为3.6~4.5;叠合试件与整浇试件的极限承载力之比平均为0.90,但与按规范GB 50010—2010得到的计算值之比平均为1.31;达到极限承载力前,各试件的高强纵筋和斜拉破坏试件的箍筋均能受拉屈服;配箍形式和根部结合面类型对叠合试件的抗震性能和极限承载力影响不大.  相似文献   

5.
通过对12根高强钢筋高强混凝土预应力梁的抗弯试验,观测试验梁的破坏现象和失效过程,研究混凝土强度等级、非预应力高强钢筋配筋率、预应力钢筋配筋率等因素对其抗弯性能的影响规律.试验结果表明,高强钢筋高强混凝土预应力适筋梁破坏过程包括开裂前阶段、带裂缝工作阶段和钢筋屈服后直至失效3个阶段,各阶段破坏模式与普通钢筋混凝土梁受弯破坏相似,均为延性破坏.混凝土强度等级以影响钢筋屈服后的抗弯性能为主,高强度等级混凝土试验梁的后期承载力下降较小.非预应力筋配筋率显著影响试验梁开裂后的抗弯性能,即相同变形时,配筋率越高承载力越高.相同张拉控制应力条件下,预应力筋配筋率越高开裂弯矩越大;相同弯矩作用下,预应力配筋率越高变形越小,其极限承载力也越高.  相似文献   

6.
为研究超载状态下内嵌CFRP板条加固损伤预应力钢筋混凝土梁的抗弯性能,对6根预应力钢筋混凝土梁进行了抗弯试验.研究了损伤加固梁的破坏形态、加固梁的承载能力和刚度,探讨了超载重复次数、超载幅值和负载加固对梁抗弯性能的影响.试验结果表明:与未加固梁相比,加固后梁的承载能力和抗弯刚度显著提高,极限承载力提高幅度在7%~15%之间;超载重复次数、超载幅值和负载加固对加固梁的极限承载力影响较小;超载幅值和负载加固影响加固梁的刚度;建立的承载力计算公式合理,与试验结果相符.  相似文献   

7.
为研究配置HRB600级钢筋混凝土梁的抗弯性能,文章设计制作12根不同配筋率的HRB600级钢筋、C50混凝土梁,采用三分点静力加载的方式,对试件的破坏形态、钢筋强度设计值取值、极限承载力、跨中挠度及裂缝宽度等进行试验研究。结果表明,配置HRB600级钢筋混凝土梁的受力形态、破坏模式与普通钢筋混凝土梁相同,其极限承载力仍然可以按照相关规范公式进行计算;建议对于受弯构件,HRB600级钢筋的屈服强度标准值取600 MPa,抗拉强度设计值取520 MPa,抗压强度设计值取435 MPa;对比跨中挠度实测值与相关规范计算值,发现两者在正常使用阶段吻合良好;试件实测最大裂缝宽度值比相关规范计算值大,在此结果基础上提出最大裂缝宽度调整系数k,对短期荷载作用下最大裂缝宽度计算公式进行修正,调整后得到的计算值与实测值吻合度较高。  相似文献   

8.
基于短切钢纤维增强TRC板具有较强的抗拉性能,可用于提高钢筋混凝土梁的抗弯性能,通过四点弯曲试验研究TRC板增强混凝土梁的工作机理。将TRC板中碳纤维网格层数作为研究参数设计2种增强工况,并建立对比工况,每种工况有2根相同的构件。对各工况构件的荷载-应变关系、荷载-挠度关系、承载力、梁的延性、裂缝开展及破坏模式进行分析。采用平截面假定提出相应的抗弯承载力计算公式。研究结果表明:TRC板能有效提高梁的开裂荷载、屈服荷载和极限荷载,梁的极限承载力可最大提高33%;TRC板增强钢筋混凝土梁的延性有一定下降;采用抗弯承载力计算公式所得承载力计算值与试验值较吻合。  相似文献   

9.
为研究RPC叠合梁的受弯性能,对叠合简支梁进行抗弯承载力试验,分析了叠合梁的破坏特征、受力性能及承载力。结果表明:叠合梁与整浇梁均发生适筋破坏,叠合梁的延性较整浇梁有所降低,随着预制高度的降低延性系数也减小,表明叠合梁预制高度对延性有一定影响;由于存在"应力超前"现象和受截面有效高度比的影响,叠合梁在荷载作用下产生的受拉钢筋应力、跨中挠度和最大裂缝宽度等都显著大于整浇梁的相应值,并均具有相似的变化趋势;叠合梁的开裂荷载、正常使用极限荷载和极限荷载主要受截面有效高度比影响,且均随截面有效高度比的增大而增大。通过对试验叠合梁跨中挠度分析,提出RPC叠合梁挠度计算建议式,为同类研究提供参考。  相似文献   

10.
为推动绿色再生类材料在叠合楼板中的应用,将不同性能要求的钢纤维增强绿色混凝土材料应用于叠合板中,研究不同构造形式所组成的钢纤维绿色混凝土叠合板受弯性能差异.开展了6块钢纤维增强绿色混凝土叠合板和2块普通混凝土叠合板足尺试件的抗弯性能对比试验.得到了其破坏形态、荷载-跨中挠度曲线、荷载-跨中板底受力钢筋应变曲线及荷载-跨中板顶面混凝土压应变曲线等特征参数,对比分析了各试件的破坏机理、变形特征、裂缝分布规律.研究结果表明,钢纤维增强绿色混凝土叠合板与普通混凝土叠合板相比受弯破坏过程类似,均经历了弹性阶段、弹塑性阶段及破坏阶段,且裂缝、挠度发展均较为充分,未有突然断裂或沿叠合面出现水平裂缝等破坏现象,均具有较好的延性;同时,不同的预制底板构造形式对叠合楼板的受弯性能也有较大影响,其中配置钢筋桁架的叠合板,尤其是附肋钢筋桁架对叠合板的受力性能有较为显著的提高;开裂荷载及极限承载力计算应考虑构造形式及不同混凝土材料预制底板对所组成叠合板受弯性能的影响.  相似文献   

11.
对7根钢筋混凝土梁拉区粘贴CFRP,压区粘贴角钢,分析不同加固量和不同加固历史对钢筋混凝土梁抗弯性能的影响;绘制受拉钢筋、CFRP的应力-应变曲线及荷载-挠度曲线。结果表明:CFRP与角钢加固的试验梁极限承载力提高明显,同时,外部加固材料可有效延迟或抑制试件裂缝的开展;对持荷加固和卸荷加固的钢筋混凝土梁,加固材料存在不同程度的应变滞后,且卸荷加固梁的CFRP、角钢利用率明显优于不卸荷加固梁;试验得到的极限承载力计算结果与试验值吻合较好。  相似文献   

12.
为了研究钢绞线腐蚀断裂对后张预应力混凝土梁受弯性能的影响,制作5片混凝土梁,在不同部位进行电化学快速腐蚀使钢绞线发生局部断裂,然后对其进行静载试验,研究钢绞线局部断裂对混凝土梁裂缝扩展、挠度变形、破坏模式和极限承载力的影响,进而探讨局部断裂的混凝土梁抗弯承载力计算分析方法和抗弯性能数值模拟方法。研究结果表明:预应力筋局部锈蚀断裂对开裂荷载影响较小,但导致构件裂缝分布发生改变,裂缝数量减小,裂缝高度不均匀性明显;构件的破坏形式由断筋局部损伤及对应区域的截面内力共同决定,若断口处弯矩较大,则很可能引起少筋破坏;反之,钢绞线断裂对破坏形式影响较小;钢绞线断裂引起混凝土梁刚度减小,其减小程度与钢绞线断裂的位置相关,钢绞线断裂在端部锚固区对梁的刚度影响很小,从锚固区到弯剪区到纯弯段,刚度减小依次增大;构件极限承载能力受钢绞线断裂位置影响,钢绞线断裂位置越靠近跨中,其抗弯承载力减小越明显。  相似文献   

13.
采用四点弯曲试验研究了预拉纤维复合板板材加固钢筋混凝土梁的抗弯性能.设计了一个对比工况试验和两个加固工况试验,两个加固工况采用的预拉纤维复合板的纤维网格层数及其预拉力程度不同.试验过程中同步记录了荷载、挠度、跨中应变、纤维应变及裂缝的开展.结果表明:随着纤维网格层数的增加及纤维网格上预拉力的增大,梁的开裂荷载、屈服荷载和极限荷载均有明显提高,加固梁的极限承载力最大提高达41.5%,但延性有一定程度的下降.最后,基于截面极限平衡理论提出了一种复合板加固梁受弯承载力的计算方法.  相似文献   

14.
文章运用有限元软件ANSYS分别对一般整浇梁、普通叠合梁以及考虑混凝土二次受力的叠合梁进行数值模拟,通过降温法模拟现浇混凝土的收缩微应变,并在叠合面上建立弹簧单元;探讨了混凝土二次受力对叠合梁极限承载力的影响。数值结果表明,普通叠合梁相对于同条件下的一般整浇梁来说,能够提高其极限承载力,而考虑混凝土二次受力的叠合梁相对于普通叠合梁其极限承载力会有所降低,但仍比一般整浇梁的极限承载力高。最后模拟了叠合参数αh的变化对混凝土二次受力叠合梁承载力的影响。  相似文献   

15.
提出了一种以OSB为腹板骨架,OSB板外用环氧树脂胶黏剂和钉子连接竹集成材而成的胶合竹-木工字梁.以竹-木工字梁的腹板高度、剪跨比及加劲肋为参数,对24根竹-木工字梁的结构性能进行研究.分析了工字梁试验全程的破坏形态和破坏机理,探讨了其极限承载力、延性和抗弯刚度等,并研究影响其结构性能的因素.研究结果表明,竹-木工字梁整体工作性能优良,跨中截面应变沿梁高方向仍基本符合平截面假定,其极限承载力与截面高度、剪跨比和加劲肋有关.当剪跨比小于2.0时,组合梁出现了明显的剪压破坏特征,剪跨比越大,极限承载力呈显著下降趋势.加劲肋能显著提高工字梁的极限承载力,提高幅度为3.4%~38.0%,对极限位移的提高幅度约为1.7%~12.6%.加劲肋增强后的工字梁的初始抗弯刚度亦有大幅提高,提高幅度为10%~30%,腹板越高,增幅越大.  相似文献   

16.
采用重复超载模拟桥梁的带缝工作状态,通过6根T形梁试验,研究了嵌入式FRP加固梁的破坏形态、内力和变形特征等力学性能,讨论了超载程度和加载次数对加固梁性能的影响.结果表明,在超载条件下,嵌入式CFRP板加固可以提高钢筋混凝土T形梁的抗弯极限承载力和刚度,增大了延性系数.不同超载程度和重复加载次数对加固梁极限承载力无明显影响,加固梁跨中截面挠度随超载次数的增加而减小.当超载程度在一定范围内时,不会引起加固梁跨中截面挠度的改变;当超载程度超过一定限度时,超载程度加大将导致加固梁的跨中截面挠度明显减小.对于重复超载作用下的带裂缝适筋梁,按照现有FRP加固理论进行设计是偏于不安全的,需要进行承载力修正...  相似文献   

17.
叠合面对叠合剪力墙极限承载力影响的数值分析   总被引:1,自引:1,他引:0  
归纳总结目前国外相关规范对界面抗剪强度的规定,通过有限元建立预制层和现浇层的接触面,定义叠合面的黏结-脱离损伤模型,分析叠合面的影响.研究结果表明,建立叠合面的黏结-脱离损伤模型能够反映叠合面在受力过程中的脱离破坏程度;在不同轴压比下,叠合面对叠合剪力墙极限承载力影响均较小,边缘构件现浇的叠合剪力墙叠合面脱离破坏程度较边缘构件预制的叠合剪力墙小.  相似文献   

18.
针对组合楼板的主要破坏模式——纵向剪切破坏,本文发现在一种新型叠合楼板中存在的连锁咬合效应,以之作为一种新的叠合面水平抗剪机制,并阐述了其作用机理.通过进行6块3类不同形式预制底板叠合成的叠合楼板的单向拟静力试验,从极限承载力、滞回曲线、自复位性能等方面总结、对比了这3种叠合板的整体受力性能,验证了这种水平抗剪机制的有效性.结果表明:相比于传统的叠合板,本文提出的这种新型叠合板中存在的连锁咬合效应减少了叠合面的损伤累积,可在一定程度上增强叠合板的变形恢复性能,提高此类叠合楼板叠合层与预制底板的协同受力性能,保证叠合试件充分发挥其极限承载能力.  相似文献   

19.
钢纤维水泥砂浆加固钢筋混凝土足尺梁抗弯性能   总被引:1,自引:0,他引:1  
为了使钢纤维水泥砂浆这种新的加固材料能早日在土木工程领域得到应用,对采用此材料加固的梁的抗弯性能进行了试验研究.试验包括1根对比梁和6根用钢纤维水泥砂浆钢筋网加固的试验梁,试验梁采用三面U形加固形式,量测主要项目为试验梁裂缝分布形态,荷载-挠度曲线,钢筋、混凝土及加固砂浆的应变发展规律等.通过改变加固梁的加固配筋率和受力形态,研究了这种加固技术对钢筋混凝土梁的承载力、破坏形态、截面刚度及裂缝分布等的影响.试验结果表明:采用钢纤维水泥砂浆对足尺钢筋混凝土梁进行抗弯加固,能较大幅度地提高钢筋混凝土梁正截面承载力和刚度;钢纤维水泥砂浆中的钢纤维能有效地抑制裂缝的产生,使试件具有良好的抗裂性能.  相似文献   

20.
对钢筋混凝土连续叠合梁的截面受力性能进行非线性分析,得出叠合梁跨中截面的受力钢筋应力超前值比简支叠合梁的大,后浇混凝土受压应力滞后值比简支叠合梁的小,造成第1阶段的曲率、挠度增长过快,裂缝出现过早.利用有限元分析,发现连续叠合梁具有跨中截面弯矩超前,支座负钢筋应力滞后的特征,促使跨中和支座之间不断发生塑性内力重分布,从而提高了连续叠合梁的塑性变形能力、承载力、抗裂性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号