首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
广义积分收敛的必要条件具体地说为:若函数f(x)在[a,b]上黎曼可积,则f(x)在[a,b]上有界且几乎处处连续,而当f(x)的无限广义积分收敛时,则f(x)在其广义积分收敛的区域内几乎处处连续但不一定有界。若无穷级数收敛,则其一般项必收敛于0,而当f(x)的无限广义积分收敛时,f(x)却不一定收敛于0(当x趋于无穷大时),要使f(x)收敛于0(x→∞),还需附加一定的条件。  相似文献   

2.
广义积分收敛的必要条件具体地说为:若函数f(x) 在[a,b]上黎曼可积,则f(x) 在[a,b]上有界且几乎处处连续,而当f(x) 的无限广义积分收敛时,则f(x) 在其广义积分收敛的区域内几乎处处连续但不一定有界.若无穷级数收敛,则其一般项必收敛于0 ,而当 f(x) 的无限广义积分收敛时,f(x) 却不一定收敛于0(当x趋于无穷大时),要使 f(x) 收敛于0(x→∞) ,还需附加一定的条件.  相似文献   

3.
一、引理引理1 若函数f(x)在闭区间[a,b]连续,则f(x)在[a,b]上一致连续.引理2 若函数f(x)在[a,b]及[b,c]都一致连续,则f(x)在[a,c]上一致连续.注改[b,c]为[b, ∞)时,结论也成立.引理3 设函数f(x)在开区间(a,b)连续,则f(x)在(a,b)一致连续的充分必要条件是f(a 0)、f(b-0)都存在且为有限值.证明见[1]之正文及相应习题.二、主要结论定理1 若函数f(x)在区间I(I可开、半开、有限或无限,下同)可导,且f’(x)在I有界,则函数f(x)在I一致连续.  相似文献   

4.
当函数f(x)在区间[a,b]上(R)可积,且f(x)>0(或f(x)<0)在[a,b]上几乎处处成立时,给出了(R)积分不等式以∫a^bf(x)dx>0(或∫a^bf(x)dx<0)及其证明。  相似文献   

5.
实函中证明了[a b]上的有界函数f(x)黎曼可积的充要条件是f(x)不连续点所成之集的勒贝格测度为零。关于黎曼——斯蒂阶积分也有类似定理:f(x)在[a,b]上有界,α(x)为[a,b]上的有界变差函数,则f(x)在[a,b]上关于a(x)黎曼——斯蒂阶可积的充要条件是α(x)在f(x)不连续点所成之集上的全变差为零。本文就是给出这个定理的一个证明。  相似文献   

6.
本文讨论了积分变上限函数列Fn(x)=φn∫(x)af(t)dt及Fn(x)=φ(∫x)afn(t)dt的一致收敛性。得出了当{fn(x)}在[a,b]上一致收敛于可积函数f(x)时,如果φ(x)有界;或{φn(x)}在[a,b]上一致收敛于φ(x),且φ(x),f(x)有界,那么{Fn(x)}在[a,b]上一致收敛的结论。  相似文献   

7.
1 函数列一致收敛性定理定理1 若函数列f_n(x)在[a,b]上同等连续,且对于任一x∈[a,b],有f_n(x)→f(x)(n→∞),则f_n(x)在[a,b]一致收敛于f(x)。  相似文献   

8.
本文给出并论证了积分中值定理中的ξ,当 b→a~+时,将趋于(a,b)的中点,即·第一,二积分中值定理中的ξ分别有积分中值定理若函数 f(x)在区间[a,b]上连续,则在[a,b]上至少存在一点ξ,使得  相似文献   

9.
<正>在定积分计算中,有如下性质.性质i:若f(x)为[-a,a]上的连续奇函数,则integral from n=-a to a f(x)dx=0性质ii:若f(x)为[-a,a]上的连续偶函数,则integral from n=-a to a f(x)dx=2 integral from n=0 to a f(x)dx本文将上述两个性质推广到如下情形、得到一个更一般的性质.性质1:若f(x)为闭区间[a,b]上的连续函数  相似文献   

10.
关于“中间点”的渐近性的一个注记   总被引:2,自引:0,他引:2  
第一积分中值定理设f(x)在[a,b)上连续,g(x)在[a,b)上可积且不变号,则存在ξ∈(a,b)使得(1)文[1]讨论了(1)中的“中闻点”ξ当b→a~+时的渐近性,即下述下理1.定理1 若f(x)与g(x)在[a,b]上连续,且g(x)在(a,b)上不变号,f+(a)(f+(a)表示f在a点的右导数,下同)存在且不等于零,g(a)≠0,则对于(1)中的ξ有  相似文献   

11.
一个实函数F如果ACG*且F’(x)=f(x)在区间[a,b]上几乎处处成立,则f在[a,b]上Hens-tock可积,且F是f的积分原函数.相反结论也成立.而模糊Henstock积分原函数并不几乎处处可导的,因此在Vitali覆盖意义下讨论模糊强Henstock积分原函数显然是不可取的.把经典实分析理论用于模糊积分理论,利用已有的内部变差概念,给出模糊数值函数强Henstock积分的原函数的完全刻画定理.  相似文献   

12.
<正> Sard定理右f(x)d[a,b]上连续可微,则集合{f(x):f'(x)=0}的Lcbcsgnc测度为零。为证明此定理,我们先证一个引理: 引理若f(x)在[a,b]上连续可微,则对任开集A[a,b],有{f(x):x∈A}  相似文献   

13.
指出求函数的不定积分或原函数时 ,要注意定义范围。并给出一个重要命题 ,即 :若 f(x)在 [a,b]上连续 ,且 F(x)是 f(x)在 (a,b)上的一个原函数 ,则 F(x)在 [a,b]上的连续延拓是 f (x)在 [a,b]上的原函数  相似文献   

14.
指出求函数的不定积分或原函数时,要注意定义范围.并给出一个重要命题,即:若f(x)在[a,b]上连续,且F(x)是f(x)在(a,b)上的一个原函数,则F(x)在[a,b]上的连续延拓是f(x)在[a,b]上的原函数.  相似文献   

15.
本文将证明牛顿—莱布尼兹公式对于 schwarz 导数亦成立。设函数 f(x)定义在[a,b]上,若对于 x∈(a、b)(?)(f(x+h)-f(x-h))/(2h)存在,则该极限值为 f(x)在点 x 的 schwarz 导数。记作 f~s(x)引理1 设 f(x)是[a,b]上的连续函数,f~s(x)在(a、b)上存在,若 f(b)>(<)f(a),则存在点,c∈(a,b),使得:f~s(c)≥0(≤0)引理2 设 f(x)在[a,b]上连续,f~s(x)在(a,b)上存在,f(a)=f(b)=0,则存在点 x_1,a相似文献   

16.
如果函数y=f(x),在[a,b] 内连续,在区间(a,b)内可微,则有 f(b)-f(a)/b-a=f′(ξ) 其中ξ∈(a,b),b>a这时设y=f′(ξ)是[a,b]上的有界函数,则有如下结论:(1)若f′(ξ)≥m f(b)-f(a)≥(b-a)m(2)若f′(ξ)≤m f(b)-f(a)≤(b-a)m(3)若n≤f(ξ)≤m n(b-a)≤f(b)-f(a)≤m(b-a)  相似文献   

17.
在不定积分中,其中之一的积分方法:设y=f(x),x=φ(t)及f′(t)都是连续的,x=φ(t)的反函数t=φ~(-a)(x)存在且可导,并且∫f[φ(t)]·φ′(t)dt=F(t)+C,则∫f(x)dx=F[φ~(-a)(x)]+C。在定积分中的换元法则是:对于定积分integral from n=a to b(f(x)dx),其中f(x)在区间[a,b]上连续,如果函数x=0φ(t)满足下列条件(1)φ(t)在区间[α,β]上有定义′是单值的′单调的,且有连续导数φ′(t)。(2)当t在区间[α,β]上变化时,x=φ(t)的值在区间[a,b]上变化,在这些条件下,则有公式integral from n=a to b(f(x)dx)=integral from n=α to β(f[φ(t)·φ′(t)dt)  相似文献   

18.
这文章证明了如下的积分基本定理: 假定f(x)是定义在区间[a,b]上的实函数,同时, (ⅰ) 它的右上导数D~+f(x)>-∝,右下导数D_+f(x)<∝,在(a,b)上至多除掉一个可列集Γ以外处处成立, (ⅱ) f(x)在(a,b]上处处在半连续, (ⅲ) 对所有的x∈Γ成立, (ⅳ) 存在一个L可测的实函数ψ(x),使D~+f(x)≥ψ(x)≥D_+f(x)在[a,b)上几乎处处成立,而且max{ψ(x),0}(或min(ψ(x),0})在[a,b]上可积,那末ψ(x)在[a,b]上可积;而且 这里,有关的积分概念可以是Lebesgue的,也可以是Perron的。定理关于ψ(x)这种函数可积分的判断有它独立的意义。证明中吸收了I.S.Gal的方法,同时弥补了原作者忽略的部份。 文章最后举例说明定理的几个条件的相互独立性和对于定理的成立的必要性。  相似文献   

19.
引言本文引入了函数f(x)在[a,b]上R_φ积分概念,研究R_φ积分的性质以及R_φ积分与Riemann积分的关系,并得出函数f(x)在[a,b]上Riemann积分的几个等价定义。在本文中,[a,b]是实数轴上的有界闭区间;f(x)是定义在[a,b]上的实值函数;I是实常数,[a,b]上的分法T是有限点集T={x_0,x_1,…,x_n:a=x_0相似文献   

20.
利用函数f(x)在积分区间[a,b]端点的函数值及各阶导数值,对函数f(x)在[a,b]上的定积分进行估计,进而得到若干积分不等式.主要结果如下:若函数f(x)是[a,b]上n+1次可微函数,且|f(n+1)(x)|≤M(M>0),则|∫baf(x)dx-x∑k=0(b-a)k+1/2k+1(k+1)![f(k)(a)+(-1)kf(b)]|≤1/2n+1(n+2)!M(b-a)n+2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号