首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设U_n(x)=(sin(n 1)θ)/(sinθ)(x=cosθ)是第二类Chebyshev多项式,b_k=b_k~(n)=cos((kπ)/(n 1))(k=1,2,……n)是U_n(x)的零点,以{-1,b_1……,b_n,1}为基点的2n 1次拟Hermite-Fejer插值多项式是  相似文献   

2.
本文研究了以Jacobi多项式V_n(x)=(1-x)J_n(x)(J_n(x)=sinNθ/sin(θ/2),N=(2n+1)/2,x=cosθ)的零点为插值节点的Lagrange插值过程“1/2”平均算子,给出了点态收敛阶。  相似文献   

3.
<正> 设函数f(x)∈C[-1,1],T_n(x)=cosnθ(x=cosθ)是第一类Chebyshcu多项式,x_k=x_k~(n)-cosθ_k=cos(2k-1)/2n π(k=1,2,…,n)是T_n(x)的零点.1975年Sharma和Tzimbalario考虑了由条件L_n(f,x_k)=f(x_k)L_n~(S)(f,x_k)=0(s=1,2,3;k=1,2,…,n)所唯一确定的4n-1次Hermite-Fejer插值多项式L_n(f,x),并且  相似文献   

4.
设 P(α,β,n)(x)(α,β>-1)是 n 阶 Jacobi 多项式,本文引入以(1+x)p(α,β,n)(x)的零点集{x_k}_(k=0)~n 作为基点的 Hermitc 插值 H_(2n+1)(f,x)。我们研究用 H_(2n+1)(f,x)同时逼近函数及其导数的问题。  相似文献   

5.
I.總说 1.设:f(x)是以2π為周期的連续函数。记这种函数的全体为C_(2π)。下面所考慮的函数都屬於C_(2π)。將函数f(x)的Fejer積分和de la Vallee-Poussin積分以及Jackson积分分别记做 a_n(f,x)=1/nπ integral from n=0 to π/2 [f(x+2t)+f(x-2t)](sin nt/sin t)~2 dt, V_n(f,x)=1/2π(2n)!!/(2n-1)!! integral from n=-π to π f(t)cos~(2n) t-x/2 dt, J_n(f,x)=3/nπ(2n~2+1) integral from n=0 to π/2 [f(x+2t)+f(x-2t)](sin nt/sin t)~4 dt.  相似文献   

6.
设J_n(x)是n阶Jacobi多项式,考虑Hermite—Fejr算子 其中b_K=cos((2k-1)π/(2n 1)) (k=1,2,…,n) 本文证明了下面的定理:  相似文献   

7.
本文研究了以第2类Chebyshev多项式U_n(x)=sin(n+1)θ)/sinθ(x=cosθ)的零点为插值节点的Lagrange插值过程“1/2”平均算子的收敛阶,主要结果是定理1。  相似文献   

8.
设Rn[f;x]和Hn[f;x]分别为以第二类Chebyshev多项式Un(x)的零点b_k=cos(kπ/(n U),k=1,2,…,n作为结点的Hermite-Fejr插值算子和拟Hermite-Fejr插值多项式,我们得到两个定理。  相似文献   

9.
设H_n(f,x)是以Jacobi多项式J_n(x)的零点为基点的Hermite-Fejér插值算子,本文得到了H_n(f,x)的逼近度的渐近表示。  相似文献   

10.
设 H_n(f,x)是以Jacobi多项式J_n(x)的零点为基点的 Hermite—Fej(?)r插值算子,本文得到了H_n(f,x)的逼近度的渐近表示.  相似文献   

11.
关于结点组{x_中}_1~(民+1)C[-1,1],我们考虑2n+1阶的Hermite插值过程H_(2n+1)(f,x):C_([-1,1]~1→C_[-1,1]~1。众所周知,并非对任何函数f(x)∈C_[-1,1]~1,都存在在[-1,1]上一致地成立。 现在取{x_k=cos[(2k-1)π/(2n+1)]}_1~(n+1),此时的2n+1阶Hermite插值过程H_(2n+1)(f,x),有,‖H′_(2n+1)(f,x)‖=O(n‖f′‖),其中‖f′‖=(?)|f′(x)|,因此对于函数f(x)∈C_([-1,1]~2,(1)式在[-1,1]上都一致地成立。记  相似文献   

12.
证明了(0,p(D))三角插值多项式Rn(x)的s(s=0,1,…,q)阶导数一致收敛于函数f(x)的s(s=0,1,…,q)阶导数:设f(x)∈C2π,f(x)具有q阶连续导数,且f(q)(x)∈Lipα.0<α<1,若βk=Op(in)n(n)-f(s)(n)=Olnnnq+α,(k=0,1,2,…,n-1),则R(s)nq-s+α(s=0,1,…,q).  相似文献   

13.
设n是偶数,P_(n-1)(x)是Legendre多项式,R_n(f,x)是以(1-x~2)P~(?)_(n-1)(x)的零点为基点的所谓(0,2)型插值多项式。本文构造了两个函数类H_(ω_2),H_(ω_1)~*,研究了R_n(f,x)逼近H_(ω_2),H_(ω_1)~*中函数f(x)的阶,并且验证了所给出的逼近阶是最佳的。  相似文献   

14.
(0,δM)三角插值多项式对函数及其导数的同时逼近   总被引:1,自引:0,他引:1  
证明了(0,δM)三角插值多项式L(M)n,ε (f,x)的s(s=0,1,2,…,q)阶导数一致收敛于函数f(x)的s(s=0,1,2,…q) 阶导数:设f(x)∈C2π,f(x)具有q阶连续导数,且f(q)(x)∈Lipα,0<α<1,若βk=O(|sinM(nh)|/nq+α)(k=0,1,2,…,n-1),则|[L(M)n,ε (f,x)](s)-f(s)(x)|=O(lnn/nq-s+α)(s=0,1,2,…,q).  相似文献   

15.
本文讨论以(1-x~2)P′_(n-1)(x)的零点为结点的Hermite和Hermite-Fejer插值问题,这里P_(n-1)(x)是满足条件P_(n-1)(1)=1的n-1次legendre多项式。  相似文献   

16.
目的为了克服以2π为周期的三角插值问题所对应的插值空间Tn,ε(ε=0或1)对平移运算和求导运算不封闭,给出以π为周期的反周期函数的2-周期(0,p(D))三角插值。方法采用不同于Franz-Jurgen Delvos等人(Franz-Jurgen Delvos.BIT,1993,33(1),113-123;Franz-Jurgen Delvos,Ludger Knoche,BIT,1999,39(3):430-450.)的研究方法,通过不断求解给出结果。结果与结论给出了问题正则的充分必要条件及正则时基多项式的明显表达式,即r2v(x)=-(1/n)sum from j=1 to 2n( C2j-1cos(2j-1)(x-x2v)-D2j-1sin(2j-1)(x-x2v))/(Δ2j-1) ,q2v 1(x)=1/n sum from j=1 to n(1/Δ2j-1)[A2j-1cos(2j-1)(x-x2v 1)-iB2j-1sin(2j-1)(x-x2v 1)],其中v=0,1,…,n-1。  相似文献   

17.
研究插值多项式对|x|α达到最佳逼近度的一种构造方法,证明了对n=2m,m∈N,α∈(0,1],有Fn(α)<Cα/(n+2)α,其中F2m(α)=-max -1≤x≤1|x|α-Q2m(x)|,Q2m(x)是以第二类Chebyshev多项式的零点xj=cos jπ/(2m+2)(j=1,2,…2m+1)为插值结点的对|x|α的Lagrange插值多项式,Cα是与α有关的常数.  相似文献   

18.
設L可积函数f(x)的富理埃級数是 (x)~α_0/2+sum from n=1 to ∞(α_n cos nx+b_n sin nx)=sum from n=0 to ∞(A_n(x))其导級数是sum from n=1 to ∞(n(b_n cos nx-α_n sin nx))=sum from n=1 to ∞(nB_n(x))。又設s_n=sum from k=0 to n(u_k),当  相似文献   

19.
一类组合型三角插值多项式   总被引:5,自引:2,他引:3  
构造了一个以{θk=kπ/(n+1)}nk=1 为插值结点的f(θ)∈C2π且为奇函数的组合型三角插值多项式算子Sn(f;r, θ)(r为自然数). Sn(f;r,θ)对每个以2π为周期的奇连续函数都能在全实轴上一 致收敛到f(θ); 并且若f(θ)∈Cj2π(0≤j≤r-1)是奇的, 则Sn(f;r, θ)对其收敛阶均达到最佳收敛阶.  相似文献   

20.
目的 构造出一个以{θk=knπ}nk=0为插值节点的修正的三角插值多项式 Wn(f:r,θ)(r∈N,f(θ)∈C2π且为偶函数).方法 伯恩斯坦的第三方法.结果 证明了Wn(f:r,θ)对每个以2π为周期的偶函数都能在全实轴上一致收敛到f(θ), 并且若偶函数f(θ)∈Cj2π,0≤j≤r-1,Wn(f:r,θ), 对其收敛阶均达到最佳收敛阶.结论 通过伯恩斯坦的第三方法,算子Wn(f:r,θ)能够克服Lagrange插值多项式算子的缺点,在全实轴上一致收敛到f(θ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号