首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 359 毫秒
1.
键合是微流控芯片制作的关键技术之一.目前广泛应用的PDMS微流控芯片一般通过高真空(压力低于10Pa)氧等离子体活化及键合进行制备.需要昂贵的分子泵等设备.通过工艺改进,使用装配普通油泵的等离子体去胶机,在中真空(27Pa)成功进行聚二甲基硅氧烷(PDMS)表面改性及键合.处理后的PDMS表面亲水性得到极大改善.贴合后可永久性密封.制作微流控芯片.使用扫描电镜.红外光谱及接触角测量仪进行了表征.与献报道的高真空氧等离子体处理方法相比.效果基本一致.却大幅度降低了对设备系统的要求.并缩短了操作时间.  相似文献   

2.
采用光固化模塑法代替传统的芯片加工方法,用液体光固化材料代替传统的热塑性高分子材料以及玻璃和硅等无机材料,研究了一种微流控芯片的快捷、低成本制作方法;同时研制出了适用于光固化材料芯片的键合方法。对键合后的芯片进行检验,实验结果表明,光固化模塑成型的微流控芯片流道精度高、完整性好、通畅度佳;芯片透光性良好,红外光及紫外光透过率分别达94%和24%;在芯片的混合流道内能形成水包油的液滴。整个制造过程能够满足微流控芯片批量化生产的要求,且相应的生产设备造价不高,降低了微流控芯片的制作成本。  相似文献   

3.
开发具有契合肿瘤细胞尺寸的微台阶结构的微流控芯片以将肿瘤细胞从正常人血细胞中分选并捕获出来.结合微加工技术,先后两次对同一块玻璃基底进行刻蚀,改变两次刻蚀的图样与时间最终与盖板间形成高度为10μm的微台阶结构,通过玻璃基底与有机高聚物PDMS(Polydimethylsiloxane)盖板的键合制作出微流控芯片.利用具有微台阶结构的芯片,悬浮于磷酸盐缓冲盐溶液中的肿瘤细胞(MCF-7)被全部捕获在微台阶结构内,尺寸小于台阶的正常人血细胞(红细胞)流过台阶未被捕获,实现了将肿瘤细胞从正常血细胞中分选并捕获.捕获在芯片中的肿瘤细胞都具有活性.芯片整体透明,肿瘤细胞捕获过程不需要进行化学修饰等预处理.  相似文献   

4.
为了利用柔顺性材料实现电极位点与靶细胞的良好接触,同时保证微电极的可靠性,提出了一种新的聚二甲基硅氧烷(PDMS)微电极制作方法.该方法通过在硅基表面沉积金属层、光刻图形化以及电镀形成电极基本结构,然后通过PDMS浇注、湿法刻蚀、释放以及键合完成基于PDMS微电极制作.其中,微电极绝缘层制作和电极位点暴露采用浇注PDMS并结合外力夹压固化和PDMS湿法刻蚀来实现.使用该方法制作的PDMS电极,结构稳定、可靠性好,具有良好的贴附性.同时,通过SEM和阻抗测试对所制作的微电极进行了表面形貌和电学性能的测试和评价.结果显示,相对于传统方法制作的PDMS微电极,电化学阻抗降低了近60%(频率1 kHz处),基于该方法制作的PDMS微电极在力学和电学性能方面均具明显优势.  相似文献   

5.
用硅橡胶PDMS制作了一个微流控芯片,并用PDMS封接玻璃-PDMS芯片,芯片的键合成品率几乎达100%.采用光纤和光子计数器自行组装了一套结构简单、紧凑的微流控芯片激光诱导荧光光纤检测系统.以氩离子激光器为激发光源、浓度为5×10-6mol/L的罗丹明B为检测物质,对该系统的性能进行测试,发现荧光峰值明显,重复检测性好.  相似文献   

6.
提出一种优化的PDMS(聚二甲基硅氧烷)-PDMS键合技术,对PDMS基片与PDMS盖片使用不同的预聚物和固化剂配比进行键合.设置了按不同比例键合、氧气等离子体表面处理键合及涂覆液态PDMS键合这三种方法的对比实验,并将其应用于微流控芯片的封装测试.测试结果表明,不同比例键合后的芯片键合强度适宜,可重复利用,高效节能.键合参数:基片和盖片所用预聚体、固化剂质量比分别为10:1和15:1;盖片的固化温度75℃,固化时间40 min.  相似文献   

7.
倒杯式耐高温高频响压阻式压力传感器   总被引:1,自引:0,他引:1  
采用微型机械电子系统(MEMS)技术制作出了高精度、高灵敏度的硅隔离(SOI)倒杯式耐高温压阻力敏芯片,利用静电键合工艺将力敏芯片封装到玻璃环上,再通过玻璃浆料烧结工艺或高温胶黏剂将玻璃环装配到齐平式机械结构上,从而避免了管腔效应的影响,实现了耐高温高频响压阻式压力传感器的基本制作.通过有限元仿真和实验,分析了安装预紧力对传感器性能的影响,由传感器静态和动态实验得到传感器的精确度为±0.114%FS,动态响应频率为694.4 kHz,均满足火工品爆破测试等高温高频动态压力测试的要求.  相似文献   

8.
采用离心力使硅片直角边与模具凹槽直角边贴紧对准的思想,提出了一种用于三维系统封装的多芯片对准技术.基于该技术原理制作了对准装置,并实现了多芯片一次性对准键合(6层芯片).具体过程包括:加工带方形凹槽的模具;将芯片切割为形状一致的方形,并保证边缘整齐;将芯片置入凹槽并旋转模具,对准后停止旋转并夹紧固定堆叠芯片;将固定后的芯片转移至键合腔内实现键合,试验测试键合后对准误差为4μm.具体分析了影响多层芯片对准精度的因素,并提出了优化方案,论证了离心对准技术的可行性.  相似文献   

9.
功率LED芯片键合材料对器件热特性影响的分析与仿真   总被引:12,自引:0,他引:12  
针对倒装型功率发光二极管器件,描述了功率LED器件的热阻特性,对不同芯片键合材料的功率LED热阻进行了分析,并运用AN SY S软件对3类典型芯片键合材料封装的功率LED热特性进行了仿真。仿真结果表明:采用功率芯片键合材料提高了功率LED的散热特性、降低器件PN结温,而采用普通热沉粘接胶作为芯片键合材料的功率LED的PN结温则较高,因此普通热沉粘接胶不适合用作功率LED的芯片键合材料。  相似文献   

10.
采用热/结构耦合场对非导电膜互连封装玻璃覆晶(COG)模块芯片(IC)的翘曲进行数值模拟,并分析不同热压键合参数和芯片/基板厚度对液晶显示屏(LCD)翘曲的影响.结果表明:在热压键合过程中,键合头温度对COG模块IC翘曲的影响最为显著,键合压力次之,玻璃基板温度最小; IC厚度对IC翘曲的影响不明显,而增加COG模块中玻璃基板的厚度,可有效降低IC翘曲程度.其原因在于较厚的玻璃基板的耐变形能力较高,从而抑制了翘曲.  相似文献   

11.
以压电陶瓷为振动源的压电微流芯片是实现微粒子操作、细胞分离等微流控研究的重要手段之一。能够描述压电效应以及超声声场在微流芯片各介质中分布规律的传递矩阵方法是进行微流压电芯片分析、设计与优化的一种有效手段。采用传递矩阵法推导了层叠式压电微流芯片的一维传递函数模型;对给定的算例芯片进行了参数分析与结构优化设计。结果表明一维传递函数模型既可在压电微流芯片设计中对结构参数进行优化,又可在实验过程中对实验参数的选定提供指导。  相似文献   

12.
提出一种采用微流控芯片进行微量液体表面张力系数测量的新方法,并对其制作工艺流程进行研究.以聚碳酸酯核孔膜为模,利用毛细作用力使聚二甲基硅氧烷预聚物充满膜孔.固化后与微腔室键合,注入有机溶剂溶模释放出微柱阵列.位于液气分界面处的微柱顶端由于蒸发作用打破表面张力平衡引起微柱发生弯曲形变,通过对微柱形变图像处理,计算得出表面张力系数.实验结果表明该测量方法有效,测量精度达到nN/μm.  相似文献   

13.
应用多层软光刻技术, 以聚二甲基硅氧烷(PDMS)作为芯片材料, 制作一种新型的可用于单细胞鉴定研究的微流控芯片(60 mm×40 mm×4 mm). 将肺癌细胞A549无血清悬浮培养富集肿瘤干细胞, 制成单细胞悬液, 与逆转录 聚合酶链式反应(RT PCR)的反应液混合后通入芯片, 细胞随机分布在2 048个微腔室中裂解并进行RT PCR. 该芯片集细胞捕获、 分离、 裂解及聚合酶链式反应(PCR)于一体, 实现了一步法快速鉴定肿瘤干细胞的目的, 通过统计阳性小室数可计算出肿瘤细胞中肿瘤干细胞的比例.  相似文献   

14.
发明了一种基于尺寸差异的单细胞全自动操控微流控芯片装置,可全自动检测细胞的大小,并对目标细胞进行全自动的电动操控。本装置主要由微流控芯片、差分放大器、继电器、数据采集卡以及计算机等组成。当细胞通过微流控芯片的电阻脉冲检测(RPS)的检测区时,会产生一个一定幅值的脉冲信号,计算机会根据设定的信号幅值自动识别出目标细胞,并控制继电器的通断电,继电器通电后,继电器所在通道内会产生电渗流,从而将目标细胞输运至该收集通道。系统具有全自动操控和分选精度高等突出优点,非常适合于操控样品中少量的目标细胞,如循环肿瘤细胞等。  相似文献   

15.
微流控芯片在生物化学分析中的应用   总被引:2,自引:0,他引:2  
在介绍微流控芯片基本特征的基础上,阐述了微流控芯片的独特优势,并从5个方面探讨了微流控芯片在生物化学分析中的应用。  相似文献   

16.
综述了雌激素受体α的检测方法及其研究进展,详细介绍了免疫组织化学、逆转录-聚合酶链反应、蛋白质免疫印迹、微流控芯片等方法的研究现状,并做出了展望.  相似文献   

17.
A kind of PH gradient microfluidic chips through soft-lithography microfabrication for isoelectric focusing (IEF) and high performance liquid chromatography (HPLC) is introduced here. These pH gradient chips have the advantages such as easy fabrication, controllable pH range and precision, isoelectric focusing and separation at the same time, low voltage for isoelectric focusing, and time stable pH gradient. This method has potential application to sample preparation, separation and analysis of microfluidic chips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号