首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
为研究城市隧道同时侧穿桩基、下穿隧道的受力与变形规律,依托大连东港商务区220 kV电力隧道主体施工工程,通过单桩水平位移方程与经验参数修正公式、Peck公式相结合,对桩基、既有隧道变形进行理论分析和计算,并采用数值模拟试验和现场实测验证。分析了电力隧道开挖对桩基位移及受力的影响规律,研究了既有隧道的沉降变形。研究结果表明:桩基水平位移及桩端沉降均随电力隧道施工的进行不断增加;随着桩身深度增加,桩身轴力先增大后减小;随着隧道与桩间距增加,桩身轴力先增大后趋于稳定;桩身弯矩在不同深度内均随隧道与桩距离增大而增大,但增幅较小;既有隧道的存在也会对桩基产生变形影响;数值模拟得到的既有隧道最大沉降位移为7.34 mm。数值模拟结果与理论计算及现场实测结果一致。研究结论为同时穿越的类似工程提供参考。  相似文献   

2.
通过三维弹塑性有限元模型的建立,探讨软土地区盾构隧道开挖对地表沉降及上部桩基工作性状的影响规律。结果表明:地表沉降随盾构隧道开挖深度的增大而减小,而发生地表沉降范围增大;当桩体位于隧道拱顶正上方时,桩端与隧道拱顶间的最小安全距离为0.5d(d为隧道直径);盾构隧道开挖在其侧上方引起的影响区为距离隧道中心线1d的范围。  相似文献   

3.
基于剪切位移法和Winkler模型采用两阶段分析方法探讨非均质地基中隧道开挖对被动单桩受力特性的影响。首先根据Loganathan修正的解析式估算隧道周边土体的竖向位移并将位移模式作用于桩身,然后建立被动单桩的竖向位移微分方程,采用有限差分法得出隧道开挖引起的单桩沉降与受力的解析解,最后讨论了隧道埋深和直径、桩基与隧道中线水平距离、平均地层损失比、单桩直径和刚度等参数变化对被动单桩受力特性的影响。结果表明,被动单桩的竖向位移、桩身轴力及桩周摩阻力随隧道埋深的增加均呈先增大后减小的趋势;地层损失比及隧道开挖断面尺寸对桩基竖向受力特性的影响很大,而单桩混凝土强度等级对其影响较小;桩径和桩身刚度增加到一定程度后,被动单桩的竖向受力特性趋于稳定。  相似文献   

4.
隧道开挖引起邻近桩基的变形影响理论研究都将桩基简化成Euler-Bernoulli梁搁置在传统的Winkler地基模型和Pasternak地基模型上,忽视了桩基变形时桩基自身剪切变形的影响。基于两阶段分析法,采用Loganathan公式计算隧道开挖引起邻近土体自由位移场,再将桩基简化成可考虑剪切变形的Timoshenko梁放置在Kerr地基模型上,建立桩基水平方向受力平衡方程,结合桩基两端约束条件,获得邻近桩基的水平位移及其内力半解析解。随后考虑群桩间土体遮拦效应,进一步获得隧道开挖对邻近群桩的变形影响。通过与工程实测数据及有限元模型计算结果对比,验证了本文方法的合理性。研究结果表明:邻近群桩水平位移及其弯矩随着地层损失率增大而线性增大;隧道埋深增大会引起邻近群桩水平位移减小,桩基弯矩峰值在隧道埋深较大时明显减小;桩隧间距增大会引起邻近群桩水平位移及其内力减小,其减小速率逐渐变缓。  相似文献   

5.
黄土地层盾构隧道开挖对地表沉降影响的有限元分析   总被引:3,自引:0,他引:3  
基于黄土地层,采用邓肯-张非线性弹性本构模型,考虑盾构隧道开挖过程对周边建筑物的影响,建立了盾构隧道衬砌与土体相互作用的有限元计算模型.对黄土地层中盾构隧道外径和埋深及其与邻近建筑物的距离对地表及相邻建筑物沉降的影响规律进行了数值分析,结果表明:在相同盾构外径下,地面沉降随隧道埋深的增加几乎呈线性减小趋势;在相同隧道埋深下,地面沉降随盾构外径的增加几乎呈线性增大趋势;无论盾构外径如何,隧道顸部及相邻建筑物处的地表沉降值均随隧道和建筑物水平距离与盾构外径比的增大而减小,也随隧道埋深的增大而减小.文中给出了受沉降影响较大的范围,可为地下工程施工时对周边建筑物及地基采取加固措施提供理论依据,并为西部地区的地下工程建设提供参考.  相似文献   

6.
不同埋深下暗挖隧道施工的地层响应   总被引:3,自引:0,他引:3  
采用实测统计和数值模拟方法,对北京地铁区间暗挖隧道开挖后不同埋深下的地层应力、塑性区分布及地层变形3个方面进行分析研究.结果表明:1)隧道开挖后洞周切向应力升高区随埋深增大而向围岩深部转移,埋深达到20 m后,应力升高区的转移减缓;2)随埋深的增大,洞周塑性区与地表塑性区由完全贯通变为逐渐分离,地表塑性区的范围逐渐减小,但洞周塑性区的范围变化不大,而塑性区以外的弹性区范围增大;3)埋深达到12 m时,地中沉降曲线出现拐点,拐点与洞顶的距离随埋深的增大而增大,埋深达到20 m后,曲线拐点基本稳定在洞顶上方10 m处;4)计算结果与实测统计规律基本一致,最大地表沉降值随着埋深的增大而减小,但减小的幅度随着埋深的增大而逐渐减小.  相似文献   

7.
提出一种桩底盾构施工引起的桩基承载能力损失计算方法.先实现考虑卸载过程的双曲线荷载传递函数编译,然后利用该桩土接触模型得到隧道开挖前和开挖后的Q~s曲线;取s=50mm时对应的荷载为桩基极限承载能力,采用桩基极限承载力损失百分比作为隧道开挖对桩基承载性能影响的评价指标.结合杭州地铁1号线某工点实例,分析了桩基承载曲线变化特征、桩体内力变化规律和承载力损失影响因素.案例中,盾构施工体积损失率控制在0.5%时,桩基承载力损失值为22%.隧道开挖后,桩体中存在一点侧摩阻力不变,在该点上部桩体侧摩阻力增大,在该点下部桩体侧摩阻力有所减小.承载力损失值随着体积损失率的增大而增大;桩基的初始荷载水平越大,承载力损失值越大;桩底与隧道顶部的距离越大,桩基承载力损失值越小.  相似文献   

8.
以厦门市东渡路站建业路站的地铁隧道2号线一期工程为研究对象,利用数值模拟和现场实测数据研究了不同埋深隧道对地表沉降的影响规律,结果表明:①随着隧道埋深的增加,地表沉降呈现先增大后减小的规律;②距隧道中心线水平距离大于25 m时,沉降槽曲线逐渐趋于平缓,表明相同埋深下的隧道开挖对距隧道中心线25 m以外的地表沉降影响相对...  相似文献   

9.
基于盾构开挖侧穿邻近桩基引起桩-土相互作用的实际工况,提出了一种可预测桩基水平变形的简化计算方法. 采用两阶段法获得盾构开挖引起邻近桩基水平位移简化计算方法,第一阶段采用Loganathan公式计算盾构开挖引起邻近桩基轴线处土体自由水平位移场;第二阶段把桩基简化成 Euler-Bernoulli 梁放置在 Vlasov 地基模型上,建立桩基水平位移控制方程,结合桩基两端约束情况,采用差分法获得邻近桩基的水平位移矩阵解. 随后考虑群桩之间的土体遮拦效应,进一步获得邻近群桩的水平变形差分解 . 通过与两个既有工程案例实测以及既有地基模型计算结果对比,验证了本文方法的优越性. 群桩参数分析表明:地层损失率及隧道埋深的增大均会引起邻近群桩水平位移的增大,但桩身产生最大位移处会随着隧道埋深增加而增大;桩隧之间间距的增大会引起邻近群桩水平位移的减小,但其减小速率逐渐变缓.  相似文献   

10.
基于Mindlin及Loganathan解,给出正截面附加推力、盾壳摩擦力和土体损失这三个主要影响因素下新建隧道对拟建平行隧道地层变形影响系数的计算公式,并以北京典型地层为例进行分析.结果表明:正截面附加推力影响系数及盾壳摩擦力影响系数随着隧道间距和隧道埋深的增大而减小,两者最大值点随隧道埋深每增加10 m,其位置距开挖面增加1倍洞径,即6 m;土体损失影响系数随着隧道间距的增大而减小.研究结果可为类似工程提供借鉴及参考.  相似文献   

11.
为研究盾构下穿高铁路基时道床、路基响应规律,依托西安地铁一号线下穿郑西高铁实际工程,基于沉降理论估算了双线隧道施工引起上方路基沉降量,建立了区间隧道下穿既有高铁路基数值模型,分析了不同桩底与隧道净距下道床、路基、CFG桩竖向沉降与CFG桩受力响应规律。结果表明:CFG桩轴力、道床、路基竖向沉降变形随桩底与隧道净距逐渐增大而增大,施工至隧道正上方时达到最大,平行于掘进方向随与隧道水平距离增加,沉降逐渐减小,沿盾构施工方向沉降逐渐增大,道床与路基结构产生倾斜但垂直倾斜高度均不超过2mm;CFG群桩基础最大轴力集中两侧单桩,而隧道正上方范围内CFG所受轴力较小,在h=3.235m与5m工况下,CFG桩所受轴力值达到最小、最大,褥垫层以内的CFG桩未出现受压破坏。  相似文献   

12.
徐硕  朱永全  徐强  李赛  王晨曦 《科学技术与工程》2021,21(31):13545-13551
依托西安地铁14号线盾构侧穿大西高速铁路特大桥群桩基础工程,采用三维有限元数值模拟、结合现场监测,对盾构施工近距离穿越超长群桩的影响及加固方案进行了研究。研究结果表明:盾构施工过程引的起前排桩桩体位移变化大于后排桩,竖向位移均为负值,且桩底沉降均大于桩顶,水平位移变化主要在隧道所在深度及以上区域,桩体最大弯矩和轴力均出现在隧道拱顶对应位置;无隔断、加固措施的工况下,桥台沉降最大值为4.19 mm,超过控制指标;提出的三种加固方案效果呈现以下规律:袖阀管注浆加固<钻孔灌注桩隔断<注浆+隔断桩+钢横撑综合加固,采用综合加固方案对桩身位移、内力优化效果最优,水平、竖向位移及轴力、弯矩分别减小65%、20%、80%、50%,并且桥台沉降最大值为1.47 mm,满足控制指标。  相似文献   

13.
结合某地铁区间隧道盾构施工近距穿越桥梁桩基的复杂条件,选取桥台与桥墩基础影响最大断面,对盾构施工引起地表沉降及桥梁桩基的变形、应力及内力进行三维数值模拟计算。结果表明:①双线隧道盾构推进引起地表最大沉降位于双线隧道中间某处,大于单线隧道引起的地表最大沉降,地表沉降随着两条隧道间距的减小而增加;②右线隧道盾构施工引起B0C0桥台桩基近隧道边桩产生的最大变形与内力均发生在距桩顶13 m处,最大横向挠曲变形、纵向挠曲变形分别为2. 0、4. 8 cm,边桩内力致使桥台桩基超出承载能力,承台发生倾向隧道一侧的倾斜和水平面内扭转,严重影响桩基的安全;③双线隧道盾构施工引起B7C7桥墩桩基近隧道边桩桩顶处产生最大位移,最大横向水平位移、纵向水平位移分别为2. 6、5. 2 cm,右侧桥墩桩基承台产生的最大横向水平位移、竖向位移、纵向水平位移分别为3. 2、3. 4、4. 6 cm,承台发生倾向隧道一侧的倾斜和水平面内扭转,倾斜值为0. 001 8,接近规范规定的允许值,盾构施工时须引起注意。基于上述分析结果,提出盾构近距推进时的施工监测及施工参数调整的建议。  相似文献   

14.
基于圆孔扩张理论运用FLAC3D 有限差分软件模拟了静压桩沉桩挤土过程, 并对土体位移的数值模拟结果与解析解计算结果进行了对比, 二者的计算数值与变化趋势吻合得较好. 在此基础上, 运用位移贯入法模拟沉桩的摩擦作用, 使沉桩全过程的计算结果更趋近于实际情况. 基于此数值模拟方法分别计算沉桩深度为4, 8, 12, 16, 20 m 的沉桩行为对临近隧道的变形与内力影响, 得出了以下结论: 静压桩沉桩对邻近隧道的变形有较明显的影响.随着沉桩深度的增加, 隧道结构位移也随之增大, 且以水平位移为主. 当沉桩深度达到20 m 时, 隧道结构最大位移为11.55 mm. 沉桩过程亦使隧道产生一定的扭转: 沉桩深度为4, 8, 12, 16 m 时, 隧道顺时针偏转(背向沉桩方向);沉桩深度为20 m 时, 隧道逆时针偏转(朝向沉桩方向). 随着沉桩深度的增大, 隧道结构的附加弯矩从对称竖向轴线分布逐渐向逆时针方向偏转至对称横向轴线分布; 沉桩后隧道的弯矩图有逆时针扭转的趋势(转向沉桩侧), 且大部分隧道结构的弯矩绝对值有减小趋势.  相似文献   

15.
浅埋暗挖隧道施工产生的地表沉降是施工过程中令人关注的问题,采用数值试验的方法,通过模拟假设、建立模型和数值计算,研究了相邻隧道断面不同布置方式和注浆材料参数对地表沉降的影响.结果表明:隧道埋深越深,越需要大的隧道间距来实现沉降槽的双峰状态.在隧道埋深为2倍洞径时,倾斜布置条件下双隧道的垂直距离和水平距离接近25倍洞径时产生的地面沉降较小,垂直布置条件下双隧道间距越大,产生的地面沉降越小.拱顶注浆对控制地表沉降有明显效果,注浆参数提高要比注浆层厚度增加的效果好.  相似文献   

16.
隧道开挖对周围土体及桩基影响的试验研究   总被引:2,自引:1,他引:1  
通过离心机试验研究了粘土中隧道开挖引起的土体瞬时和长期沉降.对不同的隧道与桩间距情况进行了3组离心机试验,研究隧道开挖对桩基的瞬时和长期影响.试验结果表明,高斯曲线法计算的土体瞬时沉降与试验值比较吻合,而计算的长期沉降低估了地表沉降的影响范围.隧道开挖引起的桩身最大轴力和弯矩都发生在隧道起拱线附近,而且桩基反应都是随着...  相似文献   

17.
为了确定双线地铁隧道开挖对近接建筑桩的影响,采用一系列室内离心机模型来模拟不同覆土直径比(C/D)下双线隧道近接已有基桩的施工过程,通过定量控制隧道外套的水囊注放水的方式模拟和控制隧道的地层损失。通过离心机试验测定了不同覆土直径比下隧道近接施工横截面地表沉降和基桩的沉地表与基桩的沉降量降,以及单桩轴力与侧摩阻力在隧道推进过程中的变化情况随着隧道推进距离的变化规律和单桩轴力与侧摩阻力的变化情况。结果表明,隧道与桩和地表的相对位置对沉降的量值和分布规律以及基桩的轴力、侧摩阻力有显著影响。  相似文献   

18.
代坤 《科学技术与工程》2021,21(34):14719-14725
深厚填土地基因土体固结沉降导致桩基产生负摩阻力,负摩阻力会造成桩身的沉降量过大和承载力降低。针对能较准确计算深厚填土场地基桩负摩阻力方法研究成果不足的问题,通过不同法向应力下的土–混凝土界面剪切试验讨论了桩侧摩阻力的发挥机理,并考虑桩侧摩阻力随深度的分布规律,提出结合双曲线模型和有效应力法的桩侧摩阻力分段计算模型。然后,基于桩–土体系的能量传递,建立负摩阻力条件下基桩的能量平衡方程,进而导出同时考虑桩–土相对位移和桩–土体系势能变化的桩身轴力和位移计算表达式。以某桩基现场试验项目进行计算,将理论计算结果与试验实测结果对比分析,结果表明:理论计算所得桩身轴力沿深度变化曲线与试验结果基本吻合,本方法能够较准确的分析深厚填土地基中基桩的力学特性。  相似文献   

19.
为研究桥梁桩基施工引起地层蠕变行为对邻近地铁隧道安全运营的影响,依托实体工程,采用卸荷条件下黏土蠕变特性试验确定了隧道周围土体的蠕变模型,通过数值模拟手段(FLAC3D软件)与现场监测相结合的方法,分析了桩基开挖期间地铁隧道的竖向位移、水平位移和应力分布状态。结果表明:广义Kelvin本构模型能够较为准确的描述黏土体开挖卸荷时的蠕变效应;桩基开挖后,邻近地铁隧道衬砌位移不断增大,随后进入稳定状态;随着桩基开挖数量的增加,地铁隧道竖向位移和水平位移总体表现为下沉和向外收敛趋势;桩-隧最小净距越小,桩基施工对隧道影响越大,采用隧道双侧布桩的施工方式,能够有效降低桩基开挖时隧道拱腰的累计水平位移,有利于地铁隧道的安全稳定运营。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号