首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
采用两阶段方法简便地研究盾构隧道开挖引起的邻近群桩竖向位移。第1阶段,采用Loganathan公式计算盾构隧道开挖引起的桩基轴线处土体竖向位移。第2阶段,首先基于Winkler地基梁模型,将土体位移转化为荷载施加到桩基上;然后,结合叠加法,计算盾构隧道开挖引起的邻近单桩竖向位移;最后,考虑群桩间的土体遮拦效应,再结合叠加法求解出盾构隧道开挖引起的邻近群桩竖向位移。通过与有限元模拟结果进行对比,验证本文所提计算方法的准确性,并进一步分析各物理参量变化对群桩竖向位移的影响。研究结果表明:其余参数不变的情况下,隧道埋深和地层损失比增大均会增强盾构隧道开挖对邻近群桩的影响,导致邻近群桩的竖向位移增大;桩基直径增大导致其抵抗盾构隧道开挖影响的能力增加,进而引起邻近群桩的竖向位移略微减小;土体弹性模量增加导致邻近群桩顶端所受的向下荷载与底端所受的向上荷载均增加,进而引起邻近群桩的顶端竖向位移(最大位移)增大,底端竖向位移减小;桩基与隧道距离增加可减弱盾构隧道开挖对邻近桩基的影响,减小桩基竖向位移;群桩间距增大可引起桩基间的土体遮拦效应减弱,导致桩基的相对竖向位移增大。  相似文献   

2.
地铁隧道施工诱发桩基变形的数值仿真分析   总被引:1,自引:0,他引:1  
利用数值分析软件ANSYS建立弹塑性有限元模型;考虑位于区间隧道轴线不同位置的邻近桩基及不同桩长情况,对区间隧道施工诱发邻近桩基的变形进行数值仿真试验分析,同时分析隧道开挖后土体与桩体参数等因素对邻近桩基变形的影响。数值仿真试验结果表明:地铁隧道开挖后桩体发生倾倒变形,桩端与洞轴线的相对位置及桩端土性对桩基变形有明显的影响,有桩侧隧道周围向洞内的水平位移比无桩侧的水平位移小,且随桩长增加,两者差别增大。  相似文献   

3.
为评估明挖地铁区间隧道施工对高架桥的影响,结合重庆轨道交通环线某区间隧道施工,采用有限元分析软件MIDAS-GTS建立了隧道及桥墩的三维模型进行数值模拟,分析了隧道开挖对桥墩、围岩的应力及位移影响.结果表明:隧道开挖后围岩和桥墩沉降的不同,桥梁桩身将受到围岩的负摩擦力作用;隧道开挖在桥墩距隧道近端引起的桩基位移向下,在远端引起的竖向位移向上;开挖荷载对桩基应力影响不仅与桥墩到开挖隧道之间的距离有关,还与桥梁桩基高度有关,隧道支护锚杆最大轴力为7.07 k N能满足安全稳定性的要求.  相似文献   

4.
为了系统研究桩土的相对刚柔性对隧道开挖引起的邻近桩基附加位移和附加内力的影响规律,本文采用三维数值分析方法,通过变换桩基弹性模量、半径和桩长而获得不同桩土相对刚度比,对比分析了隧道开挖时不同桩土刚度比的桩基附加位移和内力的变化规律。结果表明:在桩长一定的情况下,桩土刚度比越大,隧道开挖对桩基产生的附加内力越大,附加位移越小,尤其是桩基的竖向附加沉降量随桩土刚度比的减小而急剧增大;在弹性模量和桩径一定的情况下,桩土刚度比越大,桩基产生的附加内力越小,位移越大。因此,隧道开挖时需对不同刚柔性桩基加以区别保护,研究成果可为隧道施工和设计提供参考。  相似文献   

5.
以武汉4、6号线某区间在建地铁为背景,为了研究地铁隧道施工在不同地层损失率、不同施工顺序下对地表沉降和邻近建筑物桩基变形的影响,运用peck公式和FLAC2D数值模拟方法,结果表明:地层损失率为1.5%和2.0%时,地表沉降和桩身竖向位移值不满足安全要求,应控制地层损失率在1.0%以内;不同地层损失率和施工顺序对桩身水平位移影响较小;先施工6号线后施工4号线引起的桩身位移较小,建议采用此施工顺序.  相似文献   

6.
江杰  张探  欧孝夺  付臣志 《科学技术与工程》2021,21(25):10880-10886
深基坑开挖卸荷会对坑底工程桩的桩身受力和位移特性产生影响,同时在实际工程中,软土在开挖情况下具有较为明显的蠕变效应,但较少有人研究蠕变对坑底工程桩桩土相互作用的影响。采用两阶段分析方法,第一阶段基于H-K三参量模型推导出Mindlin的时域解,提出了一种用于计算基坑开挖卸荷引起的坑底土体竖向附加应力的计算方法,并进一步解得坑底土体竖向位移场的时域解。第二阶段通过建立桩身控制方程,利用有限差分法得到开挖卸荷后考虑坑底土体蠕变变形的单桩非线性分析方法。研究结果表明,得到的时域解能够较好地反映软土基坑开挖条件下考虑土体蠕变变形时坑底单桩的桩身轴力和位移特性发展趋势,为相关工程提供参考。  相似文献   

7.
深基坑开挖时隔离桩位置对邻近既有地铁隧道的变形分析   总被引:1,自引:1,他引:0  
深基坑开挖时周围土体的卸荷作用将引起邻近既有地铁隧道的变形,对其正常使用产生影响,隔离桩的位置控制隧道变形的效果值得研究。基于杭州市某房建地下室基坑工程采用隔离桩保护邻近既有地铁隧道的工程案例,采用ABAQUS有限元软件进行数值模拟,建立二维模型对隔离桩在不同位置条件下隧道的变形进行了分析。研究结果表明:基坑开挖最终引起隧道下沉约3.1 mm,隧道向靠近基坑方向水平位移约1.7 mm,数值模拟计算结果与现场实测数据的相关规律吻合;隔离桩距离隧道越近,基坑开挖对既有地铁隧道变形的影响越小。  相似文献   

8.
基于盾构开挖侧穿邻近桩基引起桩-土相互作用的实际工况,提出了一种可预测桩基水平变形的简化计算方法. 采用两阶段法获得盾构开挖引起邻近桩基水平位移简化计算方法,第一阶段采用Loganathan公式计算盾构开挖引起邻近桩基轴线处土体自由水平位移场;第二阶段把桩基简化成 Euler-Bernoulli 梁放置在 Vlasov 地基模型上,建立桩基水平位移控制方程,结合桩基两端约束情况,采用差分法获得邻近桩基的水平位移矩阵解. 随后考虑群桩之间的土体遮拦效应,进一步获得邻近群桩的水平变形差分解 . 通过与两个既有工程案例实测以及既有地基模型计算结果对比,验证了本文方法的优越性. 群桩参数分析表明:地层损失率及隧道埋深的增大均会引起邻近群桩水平位移的增大,但桩身产生最大位移处会随着隧道埋深增加而增大;桩隧之间间距的增大会引起邻近群桩水平位移的减小,但其减小速率逐渐变缓.  相似文献   

9.
文章利用有限差分软件FLAC3D研究隧道开挖对邻近土体及群桩基础的影响,由于隧道开挖而引起的隧道周围土体位移,从地表沉降、水平位移分析隧道开挖后衬砌椭圆变化形式,通过隧道开挖后桩身位移、桩的内力等方面变化研究隧道开挖对邻近桩基础影响;采用有限差分软件计算得到的桩基内力位移与采用两阶段法得到的结果进行对比。在数值模型中,土体采用Mohr-Coulomb弹塑性模型,衬砌采用线弹性材料,桩基础用Pile单元代替实体桩。  相似文献   

10.
基于剪切位移法和Winkler模型采用两阶段分析方法探讨非均质地基中隧道开挖对被动单桩受力特性的影响。首先根据Loganathan修正的解析式估算隧道周边土体的竖向位移并将位移模式作用于桩身,然后建立被动单桩的竖向位移微分方程,采用有限差分法得出隧道开挖引起的单桩沉降与受力的解析解,最后讨论了隧道埋深和直径、桩基与隧道中线水平距离、平均地层损失比、单桩直径和刚度等参数变化对被动单桩受力特性的影响。结果表明,被动单桩的竖向位移、桩身轴力及桩周摩阻力随隧道埋深的增加均呈先增大后减小的趋势;地层损失比及隧道开挖断面尺寸对桩基竖向受力特性的影响很大,而单桩混凝土强度等级对其影响较小;桩径和桩身刚度增加到一定程度后,被动单桩的竖向受力特性趋于稳定。  相似文献   

11.
基坑开挖卸载对下部地铁的作用分析   总被引:1,自引:0,他引:1  
随着城市建设的高速发展,越来越多的基坑开挖工程处于既有地铁上方,由于上部的卸载作用,对下方既有地铁会带来一定的影响。宁芜改线项目基坑工程位于南京地铁的正上方,坑底距地铁顶的距离仅为7.5m,基坑开挖对地铁影响的分析与计算成为该工程的关键之一,文章建立了该基坑工程的数值分析模型。计算结果与实测结果的分析表明,基坑开挖对开挖面以下土体具有显著的垂直方向卸荷作用,带动土体中的地铁产生位移,同时基坑开挖卸荷的速度和方式是直接影响既有地铁变形的关键因素。所得成果可为优化设计和施工提供有益的参考,为类似工程提供借鉴。  相似文献   

12.
郭伟  蔡旺  任宇晓 《科学技术与工程》2021,21(22):9598-9604
顶管施工广泛应用于市政工程的隧道开挖作业,但该方法对周围构筑物的影响仍需要进一步的研究。本文针对天津市某地下电缆隧道穿越高架桥桩基的实际工程案例,利用数值模拟方法建立了关于穿越高架桥桩基的沉井和顶管施工的有限元计算模型,研究了沉井和顶管施工过程中附近土体的扰动情况以及高架桥桩基的变形、受力等情况。结果表明,沉井和顶管施工都会对周围桩基础的应力和变形产生一定影响。在外径12.8米的沉井施工时,施工引起的土体卸载会使得沉井周围土体产生较大的隆起,最大回弹量为164 mm左右,三个方向(水平X方向、Y方向和竖向Z方向)的最大变形均出现在沉井上部土体周围,该沉井施工过程对距其30米处的高架桥桩基也产生了一定影响,桩体在X方向(指向沉井方向)上受到的影响较大,桩体顶部产生背离沉井的水平位移,下部则逐渐过渡到趋近沉井的水平位移,最大X方向水平位移量约为1.6 mm,对Y方向(垂直于顶管方向)的水平位移影响较小。在外径3.6米的顶管施工过程中,土体在卸载后会出现变形,最大位移为170 mm,变形出现在位于顶管底部的扰动土体。在X方向上,四个桩基均表现为桩顶部远离沉井、桩底靠近沉井的趋势。在Y方向上,桩身的最大水平位移出现在隧道开挖深度处,位移方向为远离顶管,影响范围为顶管隧道施工处上下15 m。  相似文献   

13.
基坑开挖卸荷将改变地应力平衡状态,位于基坑正下方的地铁隧道将随基底一定深度范围内土层回弹而发生上浮变形。本文结合深圳地铁11号线正上方某采用竖井工法开挖的基坑工程为例,通过建立三维有限元模型分析下卧地铁隧道随竖井开挖过程的变形规律及竖井工法保护机制。结果表明:基坑开挖对下卧地铁隧道竖向卸荷作用显著,采用竖井工法能有效减缓隧道上浮趋势,减小最终上浮量;隧道纵向变形呈双峰形态,纵向变形曲率半径未超过规定值;隧道横截面随开挖过程而发生两侧拱腰压缩、拱顶与拱底之间拉伸的变形趋势,附加弯矩随开挖卸载率增大而逐渐减小,最大附加弯矩位于拱顶附近;竖井工法能减小基底土层的扰动程度,有效抑制基底土体以及隧道围土塑性区发展深度和面积,从而有效控制下卧地铁隧道的隆起量。  相似文献   

14.
以福建省厦门市某邻近既有综合管廊基坑开挖项目为例,针对SMW工法桩+斜抛撑支护体系,采用FLAC3D有限差分软件建立综合管廊的三维数值模型,进行数值结果分析;研究综合管廊与基坑距离对基坑土体位移场、综合管廊位移和变形、综合管廊周围土体应力分布的影响. 结果表明:坑外地表沉降的影响范围不超过12 m,最大沉降位于坑外4.5 m处,基坑开挖引起的综合管廊最大水平位移和竖向位移均未超过规范的预警值;综合管廊与基坑距离和综合管廊水平位移近似成反比关系;综合管廊发生朝向基坑一侧的倾斜,倾斜度随着综合管廊与基坑距离的减小而增大;综合管廊两侧墙产生朝向基坑的水平推力使综合管廊产生朝向基坑的变形和水平位移.  相似文献   

15.
以深圳某深基坑工程为案例,利用Midas-GTS有限元软件建立三维数值模型,基于流固耦合理论分析基坑开挖和降水对紧邻既有地铁隧道产生的影响,以期为实际的基坑设计和施工提供有效的数据参考。结果表明:基坑降水造成的地下水渗流具有空间差异性,基坑长边侧渗流速度大于短边一侧,且地铁隧道处水力梯度较大;最大总位移出现在地铁隧道中部,且近基坑侧隧道产生的总位移比远离基坑侧隧道多一倍,其中最大水平位移发生在隧道侧边,最大沉降位移发生在隧道顶部;测斜位移曲线具有明显的拐点,临近地铁隧道的基坑长边一侧在35~40 m深度处可能形成潜在滑动面。  相似文献   

16.
结合某地铁区间隧道盾构施工近距穿越桥梁桩基的复杂条件,选取桥台与桥墩基础影响最大断面,对盾构施工引起地表沉降及桥梁桩基的变形、应力及内力进行三维数值模拟计算。结果表明:①双线隧道盾构推进引起地表最大沉降位于双线隧道中间某处,大于单线隧道引起的地表最大沉降,地表沉降随着两条隧道间距的减小而增加;②右线隧道盾构施工引起B0C0桥台桩基近隧道边桩产生的最大变形与内力均发生在距桩顶13 m处,最大横向挠曲变形、纵向挠曲变形分别为2. 0、4. 8 cm,边桩内力致使桥台桩基超出承载能力,承台发生倾向隧道一侧的倾斜和水平面内扭转,严重影响桩基的安全;③双线隧道盾构施工引起B7C7桥墩桩基近隧道边桩桩顶处产生最大位移,最大横向水平位移、纵向水平位移分别为2. 6、5. 2 cm,右侧桥墩桩基承台产生的最大横向水平位移、竖向位移、纵向水平位移分别为3. 2、3. 4、4. 6 cm,承台发生倾向隧道一侧的倾斜和水平面内扭转,倾斜值为0. 001 8,接近规范规定的允许值,盾构施工时须引起注意。基于上述分析结果,提出盾构近距推进时的施工监测及施工参数调整的建议。  相似文献   

17.
基坑施工对下方运营地铁隧道影响的研究   总被引:1,自引:0,他引:1  
广州某明挖隧道基坑工程位于正在运营的地铁区间隧道正上方,坑底距隧道顶的最小距离仅为2.76 m.基坑开挖对该地铁区间隧道的影响成为该工程的一个关键问题.为此建立了该基坑工程的三维空间模型,考虑了设计中采用的施工保护等措施,对实际施工工况进行了模拟,动态地分析了施工过程中开挖卸荷对下方既有地铁隧道的影响.计算结果表明该基坑施工采用的地铁保护措施能确保地铁线路结构的安全和地铁的正常运营,为设计和施工提供了有益的参考.  相似文献   

18.
为探究基坑开挖和顶管施工共同作用下下卧隧道结构的响应规律,以西安兴善寺东街雨水管道工程为背景,采用案例调研、数值模拟和实测数据分析相结合的方法对比分析采用明挖法和顶管法两种不同施工方式施工时下卧隧道变形受力规律,利用正交试验法研究基坑开挖和顶管施工共同作用时下卧隧道隆起量影响因素。结果表明:下卧隧道的隆起量随着卸荷比、开挖面积的增大而增大,随着最小净距的增大而减小,基坑开挖的影响范围与斜交宽度之间呈线性正相关分布,且影响范围/斜交宽度随着斜交宽度的减少而增加,最大隆起量约为卸荷比的7.23-18.64倍。采用顶管法施工可以减少下卧隧道的竖向位移和附加弯矩,实测数据表明顶管法会使下卧隧道产生较大的横向收敛,最大为1.7mm,实际工程中应注意控制收敛。基坑开挖和顶管施工共同作用时,各因素对左右隧道的影响程度不同,左隧道的隆起量主要受基坑开挖卸荷作用影响,右隧道的隆起量主要受顶管施工的顶推作用和开挖卸荷作用影响。同时应注意各因素之间不一定是相互独立的,需要考虑因素组合对下卧隧道隆起量的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号