首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文讨论耗散方程的混合问题{u-(tt)-△u-μ△u_t=H(▽u,D▽u) (t,x)∈(0,T)×Ωu(0,x)=f(x),u_t(0,x)=g(x) ■通过适当的函数变换,运用凸性方法证明了当H(▽u,D▽u)≥ρu_t~2+q sum from i=1 to n u_(x_1)~2++μ(?)u_t sum from i=1 to n u_(x_i)~2+u(q-2)sum from i=1 to m u_(x_1)u_(tx_1)(这里ρ>0,q>0)及integral from Ωe~(qf(x))g(x)dx>0时,所考虑混合问题的光滑解在有限时间内爆破.  相似文献   

2.
本文讨论方程u_(tt)-a_0u_(xx)a_1(u_x)~2mu_(xx)-a_2u_(xxtt)=f(X,t,u_x,u_t,u_(xt))的周期边界问题弱解的存在唯一性。  相似文献   

3.
本文证明了如果f和F关于t为周期函数,下面的奇摄动方程的边值问题有周期解:μ~2u_(xx)=u_t+bu_x+au+μF(x,t,u)+f(x,t)。文中亦给出解的渐近展式。  相似文献   

4.
§ 1 Introduction In this paper we consider Cauchy problem of the nonlinear partial differentialequation(1.1) u_t=(u(1-u)u_x/(1+u_x~2)_x Q_T=(-∞,∞)×(0,T)(1.2) u(x,0)=u_0(x) x∈(-∞,∞)where u_0(x) satisfies the hypotheses(1.3) u_0∈c′(R), 0≤u_0(x)≤1,-1≤u_0~′(x)≤1  相似文献   

5.
本文是利用一类积分算子([1]—[5])将热传导方程的解映照到变系数抛物型方程的解,并用积分算子方法来解决抛抛物型方程的第三边值问题。考虑一般的两个自变量的抛物型方程u_(xx) a(x,t)u_x b(x,t)u=c(x,t)u_t (1) 其中系数a(x,t),b(x,t),c(x,t)在区域D_0={(x,t):σ_1(t)0,而σ_1(t),σ_2(t)在O≤t相似文献   

6.
本文利用Galerkin方法和解的先验估计,研究了一类更广泛的Korteweg-de Vries方程的初边值问题。 u_t+f(u)_x-αu_(xx)+u_(xxx)=0 (x,t)∈R~+×[0,T] u(x,t)|_(t=0)=u_0(x) x∈R~+ u(x,t)|_(x=0)=0 u(x,t)→0 (x→∞)及 u_t+f(u)_x-u_(xxx)=0 u(x,t)|_(t=0)=u_0(x) x∈R~+ u(x,t)|_(x=0)=u_x(x,t)|x=0=0 u(x,t)→0,(x→∞)弱解的存在性,在适当的条件下,还可以得到古典解的存在性。  相似文献   

7.
本文讨论的是具粘性项一维气体动力学方程组u_t+[p(u)]_x=μu_(xx),v_t-u_x=0的Cauchy问题。利用非线性半群的理论作为工具,给出了该Cauchy问题广义解的存在性与唯一性。适当地提高初值u_0(x),v_0(x)及函数p(v)的光滑性,该问题的广义解便是古典解。  相似文献   

8.
§1 引言物理力学与技术中的許多問題,引导出非綫性积分方程的研究,其中很大部分問題所引导出的是Hammerstein型积分方程φ(x)=integral from n=G k(x,y)f[y,ξ(y)]dy (1.1)及Hammerstein型积分方程組 其中G是有限維空間某集合,核函数k(x,y);k_1(x,y),…,k_n(x,y)都是定义在x∈G,y∈G上的两变数函数。f(x,u)是定义在x∈G,|u|<∞上函数,f_1[x,u_1,…,u_n],f_2(x,u_1…u_n]…f_n[x,u_1…u_n]是定义  相似文献   

9.
拟线性抛物型方程和方程组的blow-up   总被引:1,自引:0,他引:1  
设Ω■R~n是有界区域,u是u_t=▽(k(u)▽u) f(u),在Ω×(0,T),k(u)(?)u/(?)v u=g(u),在(?)Ω×(0,T)上,u(x,0)=u_0(x)的古典解,此处▽n是维梯度算子,k(u)≥k_0>0,(?)u/(?)v表示u在(?)Ω的外法导数。利用凸性方法,证明了当函数f(),g(u),k(u)和u_0(x)满足以下条件:(d_1)u_0(x)>0,f(u)>0,g(u)>0;(d_2)k'(u_0)u_0~2xi k(u_0)u_(0xixi) f(u_0)>0,(?)k(u)/(?)v 1-g'(u)>0;(d_4)存在一个K,0相似文献   

10.
1.在讨论一般的振动問題时,須在整个空間R(—∞相似文献   

11.
本文用泛函积分方法讨论了下述方程: u_(xxt) η(x,t)u_(xx)=F(x,t,u,u_x,u_t,u_(xt)) 的特征问题及初边值问题,并得到了解的存在唯一性.主要结果为定理1和定理3。  相似文献   

12.
设y=f(u),u=φ(x),u在x_0可微分;u_0=φ(x_0),y在u_0可微分,则复合函数y=f(φ(x))在x_0可微分,而且(1) dy/dx|_(x=x_0)=f′(u_0)·φ′(x_0)。这个复合函数求导数法则的证明,在通常的数学分析教科书上,有如下两种: 〔证法一〕给x从x_0起取增量△x(≠0),则相应地函数u从u_0起得增量△u,y从f(φ(x_0))起得增量△y。因为f′(u_0)存在,所以当△u≠0时,令α=△y/△u-f′(u_0),就有limα=0,而且 △u→0  相似文献   

13.
本文证明了 Burgers-BBM 方程 Cauchy 问题■u_t+udivu-β△u-δ△u_t=f(u,▽u)■|t=0=Φ(x),Φ(x)∈Ⅱ~s(p~■)(s>n/2+1)在 C([0,∞):Ⅱ~s(R~■)(s>n/2+1)中解的存在唯一性,并证明了解在‖·‖_■范数意义下在[0,T]上的稳定性.  相似文献   

14.
复合函数求导的链武法则是:设函数 u=(?)(x)在点 x_0处可导,y=f(u)在点 u_0(u_0=(?)(x_0))可导,则复合函数 f_0(?)(x)在点 x_0可导,且(f_0(?))′(x_0)=f′(u_0)(?)′(x_0)。对于这个法则,我们给出一个新的证明。为此先引入两个引理。定义设 E(?)R。f在 E 上有定义,x_0。∈(?)((?)是 E 的闭包),如果存在常数 l,对于任给ε>0,存在δ>0,当x∈(x_0-δ,x_0+δ)∩E-{x_0}时,恒有 f(x)∈(l-ε,l+ε),则称 f 在x_0关于 E 有极限 l。记作 l=(?)f(x)。  相似文献   

15.
在带形域Ω=R~n×(0,T)上考虑如下退化抛物型方程的Cauchy问题: u_1(x,t)—D_i(a_(il)(x,t)·D_ju)+b_1(x,t)·D_(ju)+C(x,t)·u=f(x,t),(x,t)∈Q u(x,0)=0 x∈R~n其中方程系数是Q上局部可测函数,重复指标表示从1到n求和;并且假定成立条件:  相似文献   

16.
在柱体Q=Q×(0,T]中考虑退化抛物型方程第二边值问题: Lu≡a~(ij)(x,t)u_(xjxj) B~k(x,t)u_(xi) c(x,t)u-a(x,t)u_t=f(x,t)(1)解的存在和唯一性问题,其中Q为R~n中的有界区域,S为柱体的侧面,即S=Q×(0,T),Q为Q的边界,v为S上位于t=const而与内法线方向交于锐角的方向。  相似文献   

17.
高维高阶偏微分方程的研究,四十年代后发展较快,但考虑的方程的类型还是比较有局限性,考虑的定解问题的类型,更是这样,至于解决的彻底程度,是很不够的.对于三维三阶方程,1963年Polczewski,B.考虑了方程u_(x1 x2 x3=f(x_1,x_2,x_3,u,u_(x1),u_(2),u_(x3),u_(x1 x2),u_(x2 x3),u_(x3 x1)的Darboux问题的存在性与唯一性,1966年与1968年Frasca,M.与Castellano,Laura先后对方程  相似文献   

18.
1.问题与结果的陈述.本文讨论如下热传导方程的 Stefan 型自由边界问题:求S(t)>0与 u(x,t)使u_t=u_(xx)当00,(1.2)u(x,o)=f(x)≥0当00而 f(A)=0,(1.3)u(s(t),t)=0当0≤t≤T 且 s(o)=A,(1.4)u_x(s(t),t)=-(dx(t))/(dt)当0相似文献   

19.
考虑退化方程u_t=div(|▽u|~(p-2)▽u)+u~q的Cauchy问题,其中初始函数u_0(x)的支集有界,p>2,1相似文献   

20.
§1.引言本文考虑双曲型方程u_(xy)=f(x,y,u,u_x,u_y) (1)满足u(x,0)=σ(x) 0≤x≤a (2_1) σ(0)=τ(0) (2) u(0,y)=τ(y) 0≤y≤b (2_2)的特征問題的解的唯一性問題。如果在矩形R:0≤x≤a,0≤y≤b上存在非負的连續函数C_i(x,y)(i=1,2,3),对于R上每点(x,y)及任意的u,p,q,(?),(?),q滿足  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号