首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
头孢唑啉钠废水成分复杂、COD高、可生化性相对较差,而微波强化芬顿氧化法效率高、操作简单,可作为一种处理方法.采用微波强化Fenton氧化处理系统,研究H_2O_2质量浓度、Fe~(2+)质量浓度、初始p H、微波辐射时间对模拟废水COD的影响.结果发现,降解废水中抗生素的最优条件是:H_2O_2质量浓度为80 mg/L、Fe2+质量浓度为12 mg/L、微波辐射时间为4 min、初始pH为4.微波辐射能够明显提高Fenton试剂对头孢唑林钠的处理效果.  相似文献   

2.
微波-H_2O_2-活性炭协同催化氧化处理苯酚废水   总被引:6,自引:0,他引:6  
采用微波、H2O2和活性炭协同催化氧化法处理苯酚废水,探讨各种因素协同作用以及对苯酚废水处理效果的影响.结果表明,微波-H2O2-活性炭氧化体系能高效快速降解废水中苯酚,100 mL初始pH为5、质量浓度为100 mg/L的苯酚废水中,在活性炭3 g、微波辐射18 min、微波辐射功率200 W、H2O2质量浓度1.5 g/L的最佳处理工艺条件下,苯酚去除率达98.5%.  相似文献   

3.
以γ-Al2O3为载体,采用浸渍-沉淀法制备了CuOn–La2O3/γ-Al2O3催化剂。探讨了ClO2浓度、微波辐照功率及辐照时间、催化剂用量、体系pH值、体系温度及不同工艺对活性黄染料废水去除效能的影响。结果证实了微波强化ClO2催化氧化法的高效性和可行性。研究表明:微波强化ClO2催化氧化法能够有效去除水中活性艳黄染料,缩短反应时间,减少催化剂用量,拓宽pH值使用范围。对于200mg/L的染料废水,其处理的最佳工艺条件为:微波辐照功率400W,辐照时间1.5min,催化剂CuOn–La2O3/γ-Al2O3加入量70g/L,ClO2浓度80mg/L,体系pH值为7,在此工艺条件下,脱色率达92.24%。对比不同处理工艺,微波强化ClO2催化氧化法能够显著地提高水中活性艳黄染料的去除效果,为染料废水的处理提供了一种行之有效的新方法。  相似文献   

4.
微波诱导氧化处理苯酚废水研究   总被引:1,自引:0,他引:1  
采用微波诱导氧化工艺处理苯酚废水,以颗粒活性炭为催化剂,考察了活性炭粒径、溶液pH值、活性炭用量、微波辐射功率、微波辐射时间等因素对处理效果的影响。结果表明,采用12~18目的活性炭6g与100mL废水混合,在微波辐射功率为462W,辐射时间为5 min的工艺条件下,苯酚去除率达到94.17%,废水的pH对处理效果几乎没有影响。通过正交实验研究表明,各因素对处理效果的影响依次为:活性炭用量〉微波辐射时间〉微波功率〉pH值。进一步研究表明,微波诱导氧化对苯酚的处理效果优于活性炭吸附和单纯的微波加热,这是活性炭吸附和微波诱导氧化协同作用的结果。反应动力学研究表明,该氧化过程符合一级反应动力学规律。  相似文献   

5.
H2O2/Fe3+系统氧化活性染料废水的研究   总被引:7,自引:1,他引:6  
采用H2O2/Fe^3 系统对商业染料活性红(FN-2BL red)、活性蓝(C—R blue)和活性黄(C-2R yellow)配制的废水进行了脱色研究.结果表明,当染料质量浓度为400mg/L时,pH值为2.5,H2O2质量浓度为646mg/L,F^3 浓度是0.25mmol/L,反应温度在60℃,反应20min,3种活性染料废水的色度去除率均达到99%以上;在以上优化的脱色工艺条件下,通过正交试验以COD去除率为指标确定最佳降解工艺条件.结果表明,初始DH值为2.5,过氧化氢质量浓度对于活性红、活性蓝和活性黄废水分别为850、782、646mg/L,Fe^3 浓度为1mmol/L,反应温度为60℃,反应60min.在最优工艺条件下,活性红、活性蓝和活性黄废水的COD去除率分别达到93.6%、94.5%和96.3%.  相似文献   

6.
田军  乔秀丽 《佳木斯大学学报》2004,22(4):508-510,521
利用新生态δ-MnO2对含As(v)的模拟废水进行了吸附实验,结果表明,δ-MnO2对As(v)有良好的吸附特性,有较好的去除率.吸附前MnO2悬浊液的PH值、MnO2的投放量、As(v)的初始浓度、吸附时间、温度等对吸附效果都有一定的影响.却除的最佳条件为:室温下,PH值为6.5,MnO2投放量为100mg,As(v)的初始浓度为10mg/L,吸附时间为2h,去除率可达96%以上。  相似文献   

7.
目的研究H2O2与Fe2+的物质的量比、H2O2投加量、pH值、微波辐照功率和辐照时间对高质量浓度制药废水的处理的影响.方法以阜新某集团公司生产制药原料排出的废水为对象,将Fenton技术衍生,设计Fenton/微波工艺,进行静态试验.结果当H2O2与Fe2+的物质的量比、H2O2投加量、pH值、微波辐照功率和辐照时间改变时,出水COD都有很大改变.当试验用水为100 mL的制药废水时,H2O2与Fe2+的物质的量比50∶1,H2O2投加量为Qth,pH值为3,微波辐照功率为500 W,辐照时间为9 min时,COD去除率最大,可达到83.1%,出水COD在97.3~243.4 mg/L范围内.结论 Fenton/微波联合工艺作为一种Fenton技术衍生而来的工艺,虽不能使高质量浓度制药废水达到排放标准,但是可以氧化不易降解的有机物,降低后续工艺的处理难度.  相似文献   

8.
用三维电极电化学方法对茜素红模拟染料废水进行降解实验.考察反应器电压、电解时间.支持电解质浓度及废水pH值等因素对降解效果的影响。实验结果表明,以不锈钢作阳极,多孔石墨作阴极,活性碳颗粒作粒电极,在槽电压40V,支持电解质NaCl浓度2g/L.pH值5.1的条件下,初始浓度为300mg/L的茜素虹模拟染料废水电解40min后,脱色率达96%以上,COD去除率达88%以上。  相似文献   

9.
目的研究微波辅助类Fenton体系降解活性艳红X-3B染料废水的处理效果及p H值、催化剂投加量、H_2O_2投加量、微波辐照时间、功率等因素对废水色度和COD去除率的影响.方法制备催化剂,在微波辅助的条件下,控制pH值、H_2O_2投加量、微波功率及辐照时间、催化剂投加量,比对活性艳红X-3B的处理效果.结果初始色度为1 897倍的活性艳红X-3B废水,在催化剂投加质量浓度为10 g/L、初始pH值为3、H_2O_2投加浓度为17.5 mmol/L、微波功率为400 W,辐照时间为8 min的最优条件下,色度去除率最高可以达到99.08%,COD最大去除率达到89.12%.结论微波辅助类Fenton体系能有效处理活性艳红X-3B废水,提高废水的色度去除率和COD去除率,且该类Fenton体系投药量低,适用的pH范围也更广.  相似文献   

10.
催化氧化法是处理高浓度难降解有机染料废水的有效途径之一.采用溶胶-凝胶法(sol-gel)制备Cu-SiO2催化材料,以亚甲基蓝为有机染料废水的模拟降解对象,利用非均相微波催化氧化法,进行有机染料废水的降解实验.亚甲基蓝的浓度变化利用紫外分光光度法进行测定.分别考察H2 O2用量、催化剂掺Cu量、催化剂用量、初始温度以及溶液pH值等反应条件对降解效果的影响.实验结果表明,最佳实验条件是催化剂用量1.00 g/50mL、浓度为0.3%H2O240 μL/50 mL、微波功率为150W、初始温度为70℃、溶液pH<7,此时,亚甲基蓝的降解率可达到98.6%以上.  相似文献   

11.
以去除垃圾渗滤液生化出水中的CODCr和腐殖酸相对含量(UV254)为研究内容,对Fenton技术应用及其工艺技术条件优化进行了实验室条件下的模拟试验研究。结果表明,1)快速Fenton工艺优化条件为:初始pH值为4.0,H2O2投加量为1500 mg/L,Fe2+投加量为500 mg/L,静置时间120 min,CODCr由处理前的652 mg/L降到处理后的300.06 mg/L,去除率达53.99%;2)光催化Fenton氧化优化条件为:初始pH值为4.0,H2O2投加量为1000 mg/L,紫外灯功率为72 W,反应时间为120 min,CODCr由处理前的300.06 mg/L降到处理后的86.4mg/L,去除率达71.18%。说明,该工艺对处理垃圾渗滤液生化出水是有效的,可进行大规模的中试研究。  相似文献   

12.
膨润土吸附-微波催化氧化处理番茄酱生产废水的研究   总被引:2,自引:0,他引:2  
采用膨润土吸附-微波催化氧化技术处理番茄酱生产废水,考察了膨润土添加量、H2O2用量、辐射时间以及微波功率对废水处理效果的影响.确定微波催化氧化的条件是:微波功率650 W、辐射时间13 min、H2O2用量0.21 mL、膨润土用量1.1 g/L.在此条件下对废水进行处理,处理时间由2 h缩短为13 min,废水的COD和TOC去除率分别为84.8 %和80.1 %.  相似文献   

13.
研究了微波提取蛹虫草固体培养物中腺苷的条件.用HPLC法测定提取液中的腺苷含量,通过正交试验,确定了微波提取腺苷的最佳条件.结果表明,在提取液用量10 mL,固液比1∶200,微波强度为中火,处理时间2 min,样品中腺苷的测定值达0.50 mg/g时,微波提取时间仅为超声波提取的1/45,且提取率高于超声波提取.  相似文献   

14.
本文采用高效、快速、节能的微波技术对Mg Cl2·6H2O进行分解,通过热重分析﹙TG﹚、滴定分析和X射线衍射分析﹙XRD﹚等方法考察微波功率和时间对Mg Cl2·6H2O失重率、Cl-/Mg2+摩尔比、微波分解温度的影响规律,并对Mg Cl2·6H2O的微波分解和热分解进行了能耗分析。结果表明:当微波功率恒定时,随着微波辐射时间的增加,Mg Cl2·6H2O的失重率先升高后趋于平缓,Cl-/Mg2+摩尔比先减小后趋于平缓,微波后样品温度先降低后升高,最后趋于平缓;当微波辐射时间恒定时,随着微波功率的增加,Mg Cl2·6H2O的失重率和微波后样品温度呈递增趋势,Cl-/Mg2+摩尔比呈递减趋势;相比传统热分解过程,Mg Cl2·6H2O微波分解节能、省时,降低成本,具有潜在的工业应用价值。  相似文献   

15.
采用微波加热法,以制药厂污泥为原料,氯化锌为活化剂制备污泥活性炭.结果表明,微波功率、辐照时间和氯化锌浓度对污泥活性炭吸附性能具有较大的影响.制备污泥吸附剂的适宜条件为:干污泥与CuSO4质量比为20∶1,ZnCl2浓度为4 mol/L,微波功率为464W,辐照时间为5min.利用该活性炭处理制药废水,脱色率和COD去除率分别达到90.2%和91.6%.  相似文献   

16.
采用微波辐射技术,建立了酸性黄染料废水的处理工艺.以颗粒活性炭为吸附催化剂,考察了活性炭用量、微波辐射功率和微波辐射时间等因素对废水处理效果的影响.结果表明,2g活性炭处理50mL浓度为50mg/L的酸性黄染料水溶液时,在微波炉功率800W、反应时间7min时,可以得到最佳的处理效果。  相似文献   

17.
分别以废旧电池中回收的锰氧化物和MnO2为处理剂,对活性艳蓝模拟的染料废水进行了脱色实验。实验结果表明,初始的pH是影响脱色效率的主导因素,当pH=2,投加量为85 mg/L,反应时间t=33 min时,分别通过两个处理剂处理后废水的脱色率都在70%以上,而且通过30 min反应后的紫外扫描发现,锰氧化物更有利于染料废水的脱色,为废旧电池资源化利用提供了新途径。  相似文献   

18.
以提取蛇毒中神经生长因子过程中产生的废水为处理对象,经混凝-Fenton试剂催化氧化深度预处理后,改善了可生化性,CODCr降到2230 mg/L,BOD5/CODCr为0.26.随后结合加压SBR法进行生物处理,最佳组合工艺条件为:混凝处理的pH值为8,PAC浓度为150 mg/L;Fenton试剂催化氧化条件为:H2O2的用量为20 ml/L,pH值为4,反应时间为60 min;加压SBR法处理的停留时间为8 h,处理后出水CODCr小于100 mg/L,达到国家规定的一级排放标准.  相似文献   

19.
以马铃薯粉渣为原料,研究微波辅助提取果胶工艺.对比了液料比、提取pH值、微波加热时间、微波功率和硫酸铝用量对果胶提取率的影响,确定优化提取方案.结果表明,优化的提取条件为:液料比15∶1,提取pH值为2,微波加热时间为5 min,微波功率0.4 kW,硫酸铝用量7 mL,果胶提取率为1.853 7%,比传统提取方法时间缩短、产率提高、大量节约溶剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号