首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
以益阳黑茶为原料,采用超临界CO2萃取技术提取黑茶中的茶多酚和咖啡碱,采用正交试验对萃取温度、萃取压力、夹带剂浓度和夹带剂用量等因素进行优化(固定萃取时间为2 h).采用分光光度法测定茶叶中茶多酚和咖啡碱的含量,根据正交试验极差分析结果得出茶多酚的最佳萃取条件:萃取温度50℃,萃取压力20 MPa,夹带剂采用体积分数为70%的乙醇,适宜用量为100 mL/150 g,得率为(0.190±0.004)%.咖啡碱的最佳萃取条件:萃取温度40℃,萃取压力20 MPa,夹带剂采用体积分数为70%的乙醇,适宜用量为300mL/150 g,咖啡碱得率为(0.457±0.036)%.  相似文献   

2.
以纯CO及以水、乙醇、丙酮作夹带剂的CO为溶剂对红辣椒进行超临界萃取,用循环法测定了辣红色素及辣素在超临界流体中的溶解度。在相同实验条件下,以水、乙醇、丙酮为夹带剂的萃取均使辣红色素、辣素溶解度比纯CO萃取的增大,且选择性显著增强。夹带剂对辣素溶解度增大效应及选择性作用顺序为水、乙醇、丙酮,色素则反之。  相似文献   

3.
利用超临界CO2萃取技术对栝楼籽油的萃取条件进行了研究.采用单因素试验和正交试验分析了栝楼籽粉碎细度、萃取温度、萃取压力和萃取时间对萃取得率的影响,确定了萃取栝楼籽油的最佳工艺条件.结果表明,利用超临界CO2萃取栝楼籽油的最佳工艺条件为栝楼籽粉碎细度90目、萃取温度50 ℃、萃取压力30 MPa、萃取时间3 h,萃取得率可达39.6%.  相似文献   

4.
光萼小蜡花精油的超临界CO2萃取及其GC-MS分析   总被引:1,自引:0,他引:1  
利用超临界CO2萃取技术从光萼小蜡花中提取精油,通过单因素实验探讨萃取压力和萃取温度对萃取产率的影响,并采用GC-MS技术对萃取物成分进行分析,发现其主要组分为苯乙醇.通过对各组萃取精油中苯乙醇含量进行比较,初步确立利用超临界CO2萃取光萼小蜡花精油的最佳工艺参数为:萃取压力25 MPa,萃取温度55 ℃.  相似文献   

5.
CO2超临界流体萃取法提取竹叶黄酮的研究   总被引:3,自引:0,他引:3  
以芦丁为定量依据,采用正交设计法考察了CO2超临界流体萃取竹叶中黄酮的工艺条件。结果表明,影响CO2超临界流体提取的主要因素依次是:萃取压力、萃取温度、夹带剂的用量、萃取时间;确定了最佳提取条件为:萃取压力40Mpa、萃取温度60℃、萃取时间60min、夹带剂的用量1mL/g.竹叶总黄酮的提取量为4.978 mg/g.  相似文献   

6.
超临界CO2萃取毛竹叶中的叶绿素   总被引:1,自引:0,他引:1  
以毛竹叶为原料,利用超临界CO2萃取技术从毛竹叶中萃取叶绿素。主要考察了萃取压力、萃取温度、萃取时间、CO2流量、夹带剂(无水乙醇)用量、原料粉碎度对叶绿素收率的影响,得到本研究范围内最优实验条件:萃取温度323K、萃取压力27MPa,夹带剂(无水乙醇)体积分数10%、CO2流速为60g/h、原料粉碎粒度为60目、萃取时间80min,在此条件下,叶绿素收率为3.53‰,且重复性较好。  相似文献   

7.
采用辉光等离子体设备开展了CO2解离及工艺参数优化试验。分别探究CO2,CO2/N2,CO2/N2/He 3种试验气体中4种因素(时间、电流、体积及温度)对CO2解离效果的影响,采用响应面分析法(RSM)优化并确定了最佳工艺参数,同时研究了3种气体最佳工艺下CO2的解离效果。结果表明:纯CO2解离时间85 min,电流16 mA,温度21℃,体积250 mL;CO2/N2解离时间87 min,电流24 mA,体积54 mL,温度20℃;CO2/N2/He解离时间51 min,电流32 mA,体积288 mL,温度20℃。CO2/N2/He混合气体CO2解离效果最佳,CO2/N2混合气体CO  相似文献   

8.
超临界CO2萃取辣椒红色素工艺条件的探讨   总被引:1,自引:0,他引:1  
报道了用超临界CO2萃取技术提取、分离和纯化辣椒红色素的最佳工艺条件萃取压力为22NPa,萃取温度为40℃,在控制流速为25kg/h时萃取时间为2小时,水作为夹带剂.  相似文献   

9.
以鄂西地区的冬凌草为原料,研究萃取压力、萃取温度、分离温度、萃取时间以及夹带剂对超临界CO2萃取冬凌草甲素的产率的影响,找出最佳条件,并通过薄层层析和高效液相色谱分别进行定性、定量分析。结果表明,萃取压力为25MPa,萃取温度为60℃,分离温度为40℃,萃取时间为4h,夹带剂用量为1∶1(w/v)是最佳条件,经高效液相色谱分析得到冬凌草叶子中的冬凌草甲素含量为0.251%。  相似文献   

10.
以萃取压力、萃取温度、分离温度与萃取时间为参数,对紫穗槐精油超临界CO2萃取的最佳工艺条件进行了分析,并用气相色谱-质谱联用技术(GC-MS)对精油成分进行了鉴定.结果表明:萃取温度40 ℃、萃取压力25 MPa、分离温度38 ℃、萃取时间1.5 h为最佳工艺条件;精油含26种成分,占总萃取物含量的89.96%,主要包括α-蒎烯,月桂烯,α-雪松烯,β-桉叶油醇,反式-石竹烯,β-荜澄茄油烯等.  相似文献   

11.
Au/CexZr1-xO2催化剂在高浓度CO室温催化氧化中的活性   总被引:1,自引:0,他引:1  
 以柠檬酸溶胶凝胶法制备的铈锆氧化物为载体,采用沉积-沉淀法制备了Au/CexZr1-xO2催化剂.探讨了载体组成、焙烧温度、金担载量对该催化剂催化氧化一氧化碳性能的影响,并对催化剂进行XRD表征,优化了制备条件.结果表明:当载体为Ce0.75Zr0.25O2,焙烧温度为550℃,金担载量为4.7%的催化剂在室温下催化氧化CO的效果最好.该催化剂的优点是具有较强的耐水性;在用量少,一氧化碳浓度高的条件下仍能氧化CO30%~40%左右.  相似文献   

12.
采用超临界二氧化碳萃取技术,在比较温和的实验条件下,从蛋黄粉中分离出蛋黄油。系统研究了萃取压力、萃取温度和萃取时间等因素对萃取率的影响,并以丙酮为夹带剂,对夹带剂及其加入量对萃取效果的影响进行了研究。  相似文献   

13.
先以无机钛盐、硅酸盐为原料制取聚合硅酸硫酸钛,再通过液相水解法制得TiO2/SiO2复合光催化剂,并用SEM、XRD、BET和甲基橙脱色率对复合光催化剂进行表征。结果表明,TiO2/SiO2复合光催化剂制备优化工艺参数为:Ti(SO4)2作钛源、Ti/Si摩尔比为12∶1、水解反应pH值为6、煅烧温度为650℃,以此条件制备的复合光催化剂对甲基橙脱色率可达98.6%以上;TiO2/SiO2复合光催化剂为一种分散均匀的纳米级球形颗粒,其成分为以锐钛矿为主的TiO2,SiO2的复合有效抑制了TiO2晶粒的生长,同时提高了TiO2的热稳定性。  相似文献   

14.
为提升非饱和煤矸石室内淋滤试验的可靠性与准确性,对传统非饱和煤矸石淋滤仪的降雨模拟系统进行改良,实现了随机降雨路径的模拟,并增大了煤矸石有效淋滤体积。同时,以韩城桑树坪煤矿煤矸石为研究对象,揭示了不同降雨强度和风化程度组合条件下煤矸石淋滤特征,试验结果是:(1)淋滤液电导率(EC)及SO42-浓度(c)均随淋滤时间呈整体下降趋势,且可划分为快速下降和缓降趋稳两个阶段;(2)采用指数型函数、傅里叶函数及幂函数对不同试验条件下EC-t和c-t关系曲线进行拟合,拟合函数R2介于0.87~1.00;(3)167mm/h降雨强度下,淋滤液电导率及SO42-浓度对风化程度的敏感性指数最大,分别为3.14和7.64;(4)相较其它条件下淋滤液电导率及SO42-浓度,83mm/h降雨强度和风化3a矸石条件下淋滤液EC值和c值更高。分析得到三点结论:(1)煤矸石可溶元素释放量主要呈指数型函数衰减,并在试验进行3~5h后趋于稳定;(2)风化程度为影响煤矸石可溶元素释放能力的主控因素;(3)较小的降雨强度和较高的风化程度有利于煤矸石元素持续淋滤释放。  相似文献   

15.
The fluid inclusions in jadeitite from Pharkant area, Myanmar   总被引:3,自引:0,他引:3  
A lot of liquid-gas and liquid-gas-solid inclusions were found in Pharkant jadeitites, northwestern Myanmar and their characteristics, geological setting and porphyroclastic jadeites with inclusions in them were described in detail. The results analyzed by Raman spectrometer showed that the component of liquid-gas phase and solid phase (daughter minerals) in fluid inclusions is H2O + CH4 and jadeite separately. The results indicated that Pharkant jadeitites were crystallized from H2O + CH4 bearing jadeitic melt which may originate from mantle. The P-T conditions in which the jadeitites were crystallized were speculated to be T >650℃, P >1.5 GPa.  相似文献   

16.
Studies were carried out on the early phase of fluid inclusions which occur in residual olivines in harzburgite from the Yushigou ophiolitic mantle peridotite, the North Qilian Mountains. Components of these inclusions, analyzed by micro laser Raman spectroscopy, are dominantly CH, (70%–95%) with minor H2, N2, H2S, CO2,C2H4, C2H6, and C3H6 but there are no H2O,CO and SO2. The highly CH4-rich fluid was probably derived from an ancient deep mantle. This discovery plays an important role in all-round understanding of the fluid property of the upper mantle, especially the ancient oceanic upper mantle.  相似文献   

17.
在氟化铵-乙二醇体系中,采用阳极氧化法在铁基体上制备Fe_2O_3纳米管阵列,然后以氟钛酸铵为钛源,利用水热法在Fe_2O_3纳米管阵列上负载TiO_2纳米片,制得Fe_2O_3/TiO_2复合纳米管阵列,利用SEM、EDS、XRD、TEM、UV-Vis等手段,对所制Fe_2O_3/TiO_2纳米管阵列的表面形貌、物相结构及光催化性能进行表征,并分析Fe_2O_3/TiO_2纳米结构对亚甲基蓝的可见光降解能力。结果表明,Fe_2O_3/TiO_2复合纳米管阵列具有良好的可见光响应;NH_4F浓度为0.4%、水热反应3h制备的Fe_2O_3/TiO_2复合结构具有最佳的光催化性能,对亚甲基蓝的降解率可达90%。  相似文献   

18.
为了深入了解混相调节剂降低CO_2/原油最小混相压力的作用,测试CO_2混相调节剂降低最小混相压力的机理,开展了室内实验,并深入研究调节剂的效果。实验结果表明,混相调节剂可以降低CO_2/原油表面张力、促进CO_2抽提原油轻质组分效果、增加CO_2在原油中溶解度、降低原油黏度的作用;其中,主要的机理为降低表面张力和提高抽提轻质组分效果;当原油中调节剂质量浓度达0.3%以上,气液表面张力消失,达到混相;加入调节剂后,采出端气体突破时,CO_2萃取、抽提轻质烃体积百分数增加14倍以上。调节剂作用机理研究,深入了对调节剂改善CO_2驱油效果的认识,并对进一步筛选和研发新型调节剂具有指导意义。  相似文献   

19.
通过简单的沉淀法合成了Nb2O5/Cd S纳米粒子,利用XRD、TEM、XPS对其进行了表征,采用制备的Nb2O5/Cd S纳米粒子在可见光照射下对罗丹明B进行了降解实验.结果表明:负载在Nb2O5表面上的Cd S粒径大小较均一,约为35 nm,在可见光照射下,Cd S质量比为20%的Nb2O5/Cd S纳米粒子光催化活性最佳,可见光照射下3 h对罗丹明B降解率为98%,经过3次循环利用,发现其具有良好的光催化稳定性.  相似文献   

20.
对Al的质量分数分别为0.20%,0.35%,0.60%的Cu-Al合金粉末进行内氧化,得到Cu-Al2O3粉末。采用化学气相沉积法在Cu-Al2O3粉末表面原位生长碳纳米管(carbon nano tubes, CNTs),采用放电等离子烧结工艺成功制备了CNTs/Cu-Al2O3复合材料。采用扫描电子显微镜和透射电子显微镜观察了CNTs/Cu-Al2O3复合粉末、复合材料断口的形貌。采用显微硬度计、微拉伸试验机、摩擦磨损试验机分别对纯Cu及复合材料的维氏硬度、抗拉强度、摩擦因数进行测试。采用电化学工作站测试复合材料在3.5%NaCl (质量分数)水溶液中的耐腐蚀性能。结果表明,随着Al的质量分数的增加,粉末表面合成的CNTs的数量也增多。Al的质量分数为0.35%时,CNTs/Cu-Al2O3复合材料的综合性能最佳,与纯Cu相比,复合材料的抗拉强度和腐蚀电势分别提高了86.4%和43.2%,分别为315 MPa和-0.268 V,摩擦因数降低了53.3%,仅为0.28。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号