首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ti_(50)Zr_(27)Cu_8Ni_4Co_3Fe_2Al_3Sn_3(at%) amorphous filler metal with low Cu and Ni contents in a melt-spun ribbon form was developed for improving mechanical properties of Ti–6Al–4V alloy brazing joint through decreasing brittle intermetallics in the braze zone. Investigation on the crystallization behavior of the multicomponent Ti–Zr–Cu–Ni–Co–Fe–Al–Sn amorphous alloy indicates the high stability of the supercooled liquid against crystallization that favors the formation of amorphous structure. The Ti–6Al–4V joint brazed with this Ti-based amorphous filler metal with low total content of Cu and Ni at 1203K for 900s mainly consists of α-Ti, β-Ti,minor Ti–Zr-rich phase and only a small amount of Ti_3Cu intermetallics, leading to the high shear strength of the joint of about 460 MPa. Multicomponent composition design of amorphous alloys is an effective way of tailoring filler metals for improving the joint strength.  相似文献   

2.
The influence of nitrogen content on the precipitation of secondary phases and the tensile strength of Alloy 718 during gas tungsten arc welding was investigated. Various types of precipitates were characterized using scanning electron microscopy and transmission electron microscopy. The results showed that in the fusion zone, the volume fraction of Nb-rich phases such as Laves,(Nb,Ti)C, and δ phases, as well as Ti-rich phases such as(Ti,Nb)CN and(Ti,Nb)N, increased with increase in the nitrogen content due to the microsegregation of Nb and Ti within interdendritic areas. Nitrogen was also found to decrease the size of γ′′ particles within γ dendrites. For precipitates in the partially melted zone, constitutional liquation was observed for both(Nb,Ti)C and(Ti,Nb)N particles. Based on the results of tensile tests, the weld containing 0.015 wt% nitrogen exhibited the highest ultimate tensile strength(UTS), whereas more addition of nitrogen led to a decrease in both the UTS and yield strength due to the increased content of brittle Laves phases and decreased size of γ′′.  相似文献   

3.
Joining of Ti_2AlNb alloy to TiAl intermetallics was conducted by the newly-developed Ti–Ni–Nb–Zr brazing filler alloy.The microstructure evolution of the joints was investigated by scanning electron microscope (SEM),energy dispersive spectrometer (EDS) and electron backscatter diffraction (EBSD).The macro-micro mechanical properties were studied by shear test and nano-indentation test.Typical interfacial microstructures across the brazing seam were Ti_2AlNb substrate,α_2-Ti_3Al+β-Ti,γ-TiAl+Ti_2Ni+TiNi+α_2-Ti_3Al,α_2-Ti_3Al+β-Ti,TiAl substrate.The Ti_2Ni phase were firstly dissolved in the joints brazed at 1000°C for 10 min and then precipitated after a prolonged holding time of 15 min.The nano-indentation test revealed that Ti_2Ni phase exhibited the highest hardness of 12.60 GPa.The joints brazed at 1000°C/15 min presented the maximum shear strength of271 MPa.The dissolution and precipitation behavior of Ti_2Ni phase was also discussed.  相似文献   

4.
Ultrasonic vibration assisted tungsten inert gas welding was applied to joining stainless steel 316L and low alloy high strength steel L415. The effect of ultrasonic vibration on the microstructure and mechanical properties of a dissimilar metal welded joint of 316L and L415 was systematically investigated. The microstructures of both heat affected zones of L415 and weld metal were substantially refined, and the clusters of δ ferrite in traditional tungsten inert gas (TIG) weld were changed to a dispersive distribution via the ultrasonic vibration. The ultrasonic vibration promoted the uniform distribution of elements and decreased the micro-segregation tendency in the weld. With the application of ultrasonic vibration, the average tensile strength and elongation of the joint was improved from 613 to 650 MPa and from 16.15% to 31.54%, respectively. The content of Σ3 grain boundaries around the fusion line zone is higher and the distribution is more uniform in the ultrasonic vibration assisted welded joint compared with the traditional one, indicating an excellent weld metal crack resistance.  相似文献   

5.
Ultrasonic vibration assisted tungsten inert gas welding was applied to joining stainless steel 316 L and low alloy high strength steel L415. The effect of ultrasonic vibration on the microstructure and mechanical properties of a dissimilar metal welded joint of 316 L and L415 was systematically investigated. The microstructures of both heat affected zones of L415 and weld metal were substantially refined, and the clusters of δ ferrite in traditional tungsten inert gas(TIG) weld were changed to a dispersive distribution via the ultrasonic vibration. The ultrasonic vibration promoted the uniform distribution of elements and decreased the micro-segregation tendency in the weld. With the application of ultrasonic vibration, the average tensile strength and elongation of the joint was improved from 613 to 650 MPa and from 16.15% to31.54%, respectively. The content of Σ3 grain boundaries around the fusion line zone is higher and the distribution is more uniform in the ultrasonic vibration assisted welded joint compared with the traditional one, indicating an excellent weld metal crack resistance.  相似文献   

6.
The evolutions of phase constitutions and mechanical properties of a β-phase Ti–36Nb–5Zr(wt%) alloy during thermo-mechanical treatment were investigated. The alloy consisted of dual(β t α″) phase and exhibited a double yielding phenomenon in solution treated state. After cold rolling and subsequent annealing at 698 K for 20 min, an excellent combination of high strength(833 MPa) and low modulus(46 GPa) was obtained. The high strength can be attributed to high density of dislocations, nanosized α phase and grain refinement. On the other hand, the low Young's modulus originates from the suppression of chemical stabilization of β phase during annealing, which guarantees the low β-phase stability. Furthermore, the single-crystal elastic constants of the annealed Ti–36Nb–5Zr alloy were extracted from polycrystalline alloy using an in-situ synchrotron X-ray technique. The results indicated that the low shear modulus C44 contributes to the low Young's modulus for the Ti–36Nb–5Zr alloy, suggesting that reducing C44 through thermo-mechanical treatment might be an efficient approach to realize low Young's modulus in β-phase Ti alloys. The results achieved in this study could be helpful to elucidate the origin of low modulus and sheds light on developing novel biomedical Ti alloys with both low modulus and high strength.  相似文献   

7.
A novel Ti-Ni-Nb-Zr quaternary filler alloy with the composition of Ti-(19~25)Ni-(15~25)(Nb+Zr)(wt.%) was designed.The filler alloy was composed of(Ti,Nb)ss,(Ti,Zr,Nb)ss+(Ti,Zr)2Ni,α-Ti and Ti2Ni phases.It was fabricated into filler foil with a thickness of about 45 μm by a rapid solidification technique.The results indicate that the liquidus temperature of the Ti-Ni-Nb-Zr brazing alloy was about 978℃,and the brazing alloy presented excellent wettability on TiAl substrate.T...  相似文献   

8.
The wettability of V-active PdCo-based alloys on Si3N4ceramic was studied with the sessile drop method. And the alloy of Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6(wt%),was developed for Si3N4ceramic joining in the present investigation. The rapidly-solidified brazing foils were fabricated by the alloy Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6. The average room-temperature three-point bend strength of the Si3N4/Si3N4joints brazed at 1453 K for 10 min was 205.6 MPa,and the newly developed braze gives joint strengths of 210.9 MPa,206.6 MPa and 80.2 MPa at high temperatures of 973 K,1073 K and 1173 K respectively. The interfacial reaction products in the Si3N4/Si3N4joint brazed at 1453 K for10 min were identified to be VN and Pd2Si by XRD analysis. Based on the XEDS analysis result,the residual brazing alloy existing at the central part of the joint was verified as Co-rich phases,in which the concentration of element Pd was high up to 18.0–19.1 at%. The mechanism of the interfacial reactions was discussed. Pd should be a good choice as useful alloying element in newer high-temperature braze candidates for the joining of Si-based ceramics.  相似文献   

9.
Ti-Cu-Zr-Fe-Nb ultrafine structure-dendrite composites were designed by inducing Nb and more Ti to a Ti-Cu-Zr-Fe glass-forming alloy composition and prepared by copper mold casting.The composite alloys consist of β-Ti dendrites and ultrafine-structured CuTi2 and CuTi phases as well as a trace amount of glassy phase.The volume fraction of β-Ti dendrites increases with the increase in content of Nb which acted as the β-Ti phase stabilizer in the alloys.The composites exhibit high compressive yield strength exceeding1200 MPa,maximum strength around 1800 MPa and low Young’s modulus around 48 GPa.The plasticity of the alloys is strongly influenced by the volume fraction and morphology of the dendritic β-Ti phase,and the compressive plastic strain was enlarged from 5.9%for the 4 at%Nb alloy to 9.2%for the 8 at%Nb alloy.The preliminary cell culture experiment indicated good biocompatibility of the composite alloys free from highly toxic elements Ni and Be.These Ti-based composite alloys are promising to have potential structural and biomedical applications due to the combination of good mechanical properties and biocompatibility.  相似文献   

10.
In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er on the microstructure and mechanical properties of the welded joints was analyzed by optical microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, hardness testing, and tensile mechanical properties testing. Systematic analyses indicate that the addition of trace amounts of Er and Zr leads to the formation of fine Al3Er, Al3Zr, and Al3(Zr,Er) phases that favor significant grain refinement in the weld zone. Besides, the tensile strength and hardness of the welded joints were obviously improved with the addition of Er and Zr, as evidenced by the increase in tensile strength and elongation by 40 MPa and 1.4%, respectively, and by the welding coefficient of 73%.  相似文献   

11.
The effects of Ni addition and aging treatments on the microstructure and properties of a Cu–3Ti alloy were investigated. The microstructure and precipitation phases were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy; the hardness, electrical conductivity, and elastic modulus of the resulting alloys were also tested. The results show that Ni addition increases the electrical conductivity and elastic modulus, but decreases the hardness of the aged Cu–3Ti alloy. Within the range of the experimentally investigated parameters, the optimal two-stage aging treatment for the Cu–3Ti–1Ni and Cu–3Ti–5Ni alloy was 300°C for 2 h and 450°C for 7 h. The hardness, electrical conductivity, and elastic modulus of the Cu–3Ti–1Ni alloy were HV 205, 18.2% IACS, and 146 GPa, respectively, whereas the hardness, electrical conductivity, and elastic modulus of the Cu–3Ti–5Ni alloy were HV 187, 31.32% IACS, and 147 GPa, respectively. Microstructural analyses revealed that β′-Ni3 Ti and β′-Cu4 Ti precipitate from the Cu matrix during aging of the Cu–3Ti–5Ni alloy and that some residual Ni Ti phase remains. The increased electrical conductivity is ascribed to the formation of Ni Ti, β′-Ni3 Ti, and β′-Cu4 Ti phases.  相似文献   

12.
The effect of Al addition on microstructure and mechanical properties of hot extruded Mg–1 Mn alloy sheet was investigated. The results revealed that the dynamic recrystallization was promoted by increasing Al content. The ultimate tensile strength and yield strength of the alloy increased with the increase of Al content. The Mg–9 Al–1 Mn alloy exhibited the highest strength, with tensile strength of 308 MPa, 307 MPa, 319 MPa, yield strength of 199 MPa, 207 MPa, 220 MPa and the elongation of 20.9%, 20.1%, 19.2% in 0°, 45°, 90°, respectively.The high strength was mainly attributed to the formation of fine dynamically recrystallized grains and large amounts of the second phase. The strengthening mechanism of the alloys was explained.  相似文献   

13.
Si C ceramic has been successfully joined to Zr4 alloy using Ti Zr Ni Cu filler within the temperature range1173 K–1263 K and 15 min holding time. The morphology of the Si C/Zr4 joints was investigated by SEM, and the phases in the joints were characterized by XRD and TEM. The results indicated that part of the Zr4 substrate dissolved into the molten filler during the brazing process, contributed to the increasing Zr content and the formation of Zr[Ti] solid solution in the joints. In addition, β-Ti phase was discovered in the brazing seam. This might be attributed to the existence of β-Ti stable elements, Cu and Ni. The interface characterization showed that Si C reacted with filler alloy during the brazing process, formed a(Zr, Ti)C reaction layer on Si C surface and Zr2 Si compound near Si C substrate. Finally, the mechanical properties of the joints, evaluated by a shear strength test, reached a maximum of 95 MPa at the brazing temperature of 1203 K.  相似文献   

14.
The effect of thermo-mechanical treatment on the mechanical properties of a novel β-type Ti–36Nb–5Zr(wt%) alloy has been investigated.The solution treated alloy consists of β and α″ phases and exhibits a two-stage yielding with a low yield stress(around 100 MPa). After cold rolling at a reduction of 87.5% and subsequent annealing treatment at 698 K for 25 min, a fine microstructure with nanosized α precipitates distributed in small β grains as well as high density of dislocations was obtained to achieve a yield strength of 720 MPa and a ultimate tensile strength of 860 MPa. In spite of the formation of α precipitates, the β-stabilizers are not enriched in the parent β matrix due to the short duration and low temperature of the thermal treatment, resulting in a low chemical stability of β phase. The low stability of β phase and the small volume fraction of α precipitates produce a low Young’s modulus of 48 GPa. Such an excellent combination of low elastic modulus and high strength in mechanical properties indicates great potential for biomedical applications.  相似文献   

15.
A hybrid joint with a satisfactory mixture of pure magnesium and polypropylene(PP)was achieved via friction stir joining(FSW)in a lap-joint configuration.The tool rotational and travel speeds used in this work were 500–700 r/min and 50–100 mm/min,respectively.The mechanical properties and microstructural analysis of the resultant hybrid Mg/PP joint were examined.The results show that the maximum tensile shear strength(22.5 MPa)of the joint was attained at 700 r/min and 75 mm/min due to the optimum percentage fraction of mechanical interlocking(48%)and the presence of magnesium oxide.The interfacial joint center exhibits the maximum microhardness values because of the presence of refined and intertwined Mg fragments and density dislocations in the matrix of the PP.The joint failed via two different modes:interfacial line and weld zone fractures,respectively.  相似文献   

16.
Nb–Mo–ZrB_2 composites(V(Nb)/V(Mo) = 1) with 15 vol% or 30 vol% of ZrB_2 were fabricated by hot-pressing sintering at 2000°C. The phases, microstructure, and mechanical properties were then investigated. The composites contain Nb-Mo solid solution(denoted as(Nb, Mo)ss hereafter), Zr B, Mo B, and Nb B phases. Compressive strength test results suggest that the strength of Nb–Mo–ZrB_2 composites increases with increasing ZrB_2 content; Nb–Mo–30 vol%ZrB_2 had the highest compressive strength(1905.1 MPa). The improvement in the compressive strength of the Nb–Mo–ZrB_2 composites is mainly attributed to the secondary phase strengthening of the stiffer Zr B phase, solid-solution strengthening of the(Nb, Mo)ss matrix as well as fine-grain strengthening. The fracture toughness decreases with increasing ZrB_2 content. Finally, the fracture modes of the Nb–Mo–ZrB_2 composites are also discussed in detail.  相似文献   

17.
Cu–Nb microcomposite wire was successfully prepared by a groove rolling process. The effects of groove rolling on the diffraction peaks, microstructure, and properties of the Cu–Nb microcomposite were investigated and the microstructure evolutions and strengthening mechanism were discussed. The tensile strength of the Cu–Nb microcomposite wire with a diameter of 2.02 mm was greater than 1 GPa, and its conductivity reached 68% of the International Annealed Copper Standard, demonstrating the Cu–Nb microcomposite wire with high tensile strength and high conductivity after groove rolling. The results show that an appropriate groove rolling method can improve the performance of the Cu–Nb microcomposite wire.  相似文献   

18.
The Ti?49.8at%Ni alloy was modified by Ti ion implantation to improve its corrosion resistance and biocompatibility. The chemical composition and morphologies of the TiNi alloy surface were determined using atomic force microscopy (AFM), auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS). The results revealed that Ti ion implantation caused the reduction of Ni concentration and the formation of a TiO2 nano-film on the TiNi alloy. The phase transformation temperatures of the Ti–TiNi alloy remained almost invariable after Ti ion implantation. Electrochemical tests indicated that the corrosion resistance of TiNi increased after Ti ion im-plantation. Moreover, the Ni ion release rate in 0.9% NaCl solution for the TiNi alloy remarkably decreased due to the barrier effect of the TiO2 nano-film. The cell proliferation behavior on Ti-implanted TiNi was better than that on the untreated TiNi after cell culture for 1 d and 3 d.  相似文献   

19.
Nb–Mo–ZrB2 composites (V(Nb)/V(Mo)=1) with 15vol% or 30vol% of ZrB2 were fabricated by hot-pressing sintering at 2000℃. The phases, microstructure, and mechanical properties were then investigated. The composites contain Nb-Mo solid solution (denoted as (Nb, Mo)ss hereafter), ZrB, MoB, and NbB phases. Compressive strength test results suggest that the strength of Nb–Mo–ZrB2 composites increases with increasing ZrB2 content; Nb–Mo–30vol%ZrB2 had the highest compressive strength (1905.1 MPa). The improvement in the compressive strength of the Nb–Mo–ZrB2 composites is mainly attributed to the secondary phase strengthening of the stiffer ZrB phase, solid-solution strengthening of the (Nb, Mo)ss matrix as well as fine-grain strengthening. The fracture toughness decreases with increasing ZrB2 content. Finally, the fracture modes of the Nb–Mo–ZrB2 composites are also discussed in detail.  相似文献   

20.
The present study focuses on interface microstructure and joint formation. AA6061 aluminum alloy(Al) and commercial pure titanium(Ti) joints were welded by ultrasonic spot welding(USW). The welding energy was 1100–3200 J. The Al–Ti joint appearance and interface microstructure were observed mainly via optical microscopy and field emission scanning electron microscopy. Results indicated that a good joint can be achieved only with proper welding energy of 2150 J. No significant intermetallic compound(IMC) was found under all conditions. The high energy barriers of Al–Ti and difficulties in diffusion were the main reasons for the absence of IMC according to kinetic analysis. The heat input is crucial for the material plastic flow and bonding area, which plays an important role in the joint formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号