首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Vecchi GA  Soden BJ 《Nature》2007,450(7172):1066-1070
The response of tropical cyclone activity to global warming is widely debated. It is often assumed that warmer sea surface temperatures provide a more favourable environment for the development and intensification of tropical cyclones, but cyclone genesis and intensity are also affected by the vertical thermodynamic properties of the atmosphere. Here we use climate models and observational reconstructions to explore the relationship between changes in sea surface temperature and tropical cyclone 'potential intensity'--a measure that provides an upper bound on cyclone intensity and can also reflect the likelihood of cyclone development. We find that changes in local sea surface temperature are inadequate for characterizing even the sign of changes in potential intensity, but that long-term changes in potential intensity are closely related to the regional structure of warming; regions that warm more than the tropical average are characterized by increased potential intensity, and vice versa. We use this relationship to reconstruct changes in potential intensity over the twentieth century from observational reconstructions of sea surface temperature. We find that, even though tropical Atlantic sea surface temperatures are currently at a historical high, Atlantic potential intensity probably peaked in the 1930s and 1950s, and recent values are near the historical average. Our results indicate that--per unit local sea surface temperature change--the response of tropical cyclone activity to natural climate variations, which tend to involve localized changes in sea surface temperature, may be larger than the response to the more uniform patterns of greenhouse-gas-induced warming.  相似文献   

2.
O'Reilly CM  Alin SR  Plisnier PD  Cohen AS  McKee BA 《Nature》2003,424(6950):766-768
Although the effects of climate warming on the chemical and physical properties of lakes have been documented, biotic and ecosystem-scale responses to climate change have been only estimated or predicted by manipulations and models. Here we present evidence that climate warming is diminishing productivity in Lake Tanganyika, East Africa. This lake has historically supported a highly productive pelagic fishery that currently provides 25-40% of the animal protein supply for the populations of the surrounding countries. In parallel with regional warming patterns since the beginning of the twentieth century, a rise in surface-water temperature has increased the stability of the water column. A regional decrease in wind velocity has contributed to reduced mixing, decreasing deep-water nutrient upwelling and entrainment into surface waters. Carbon isotope records in sediment cores suggest that primary productivity may have decreased by about 20%, implying a roughly 30% decrease in fish yields. Our study provides evidence that the impact of regional effects of global climate change on aquatic ecosystem functions and services can be larger than that of local anthropogenic activity or overfishing.  相似文献   

3.
Attributing physical and biological impacts to anthropogenic climate change   总被引:4,自引:0,他引:4  
Significant changes in physical and biological systems are occurring on all continents and in most oceans, with a concentration of available data in Europe and North America. Most of these changes are in the direction expected with warming temperature. Here we show that these changes in natural systems since at least 1970 are occurring in regions of observed temperature increases, and that these temperature increases at continental scales cannot be explained by natural climate variations alone. Given the conclusions from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report that most of the observed increase in global average temperatures since the mid-twentieth century is very likely to be due to the observed increase in anthropogenic greenhouse gas concentrations, and furthermore that it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica, we conclude that anthropogenic climate change is having a significant impact on physical and biological systems globally and in some continents.  相似文献   

4.
Climate change is driving latitudinal and altitudinal shifts in species distribution worldwide, leading to novel species assemblages. Lags between these biotic responses and contemporary climate changes have been reported for plants and animals. Theoretically, the magnitude of these lags should be greatest in lowland areas, where the velocity of climate change is expected to be much greater than that in highland areas. We compared temperature trends to temperatures reconstructed from plant assemblages (observed in 76,634 surveys) over a 44-year period in France (1965-2008). Here we report that forest plant communities had responded to 0.54 °C of the effective increase of 1.07 °C in highland areas (500-2,600 m above sea level), while they had responded to only 0.02 °C of the 1.11 °C warming trend in lowland areas. There was a larger temperature lag (by 3.1 times) between the climate and plant community composition in lowland forests than in highland forests. The explanation of such disparity lies in the following properties of lowland, as compared to highland, forests: the higher proportion of species with greater ability for local persistence as the climate warms, the reduced opportunity for short-distance escapes, and the greater habitat fragmentation. Although mountains are currently considered to be among the ecosystems most threatened by climate change (owing to mountaintop extinction), the current inertia of plant communities in lowland forests should also be noted, as it could lead to lowland biotic attrition.  相似文献   

5.
Sloan LC  Walker JC  Moore TC  Rea DK  Zachos JC 《Nature》1992,357(6376):320-322
Reconstructions of early Eocene climate depict a world in which the polar environments support mammals and reptiles, deciduous forests, warm oceans and rare frost conditions. At the same time, tropical sea surface temperatures are interpreted to have been the same as or slightly cooler than present values. The question of how to warm polar regions of Earth without noticeably warming the tropics remains unresolved; increased amounts of greenhouse gases would be expected to warm all latitudes equally. Oceanic heat transport has been postulated as a mechanism for heating high latitudes, but it is difficult to explain the dynamics that would achieve this. Here we consider estimates of Eocene wetland areas and suggest that the flux of methane, an important greenhouse gas, may have been substantially greater during the Eocene than at present. Elevated methane concentrations would have enhanced early Eocene global warming, and also might specifically have prevented severe winter cooling of polar regions because of the potential of atmospheric methane to promote the formation of optically thick, polar stratospheric ice clouds.  相似文献   

6.
Allen RJ  Sherwood SC  Norris JR  Zender CS 《Nature》2012,485(7398):350-354
Observational analyses have shown the width of the tropical belt increasing in recent decades as the world has warmed. This expansion is important because it is associated with shifts in large-scale atmospheric circulation and major climate zones. Although recent studies have attributed tropical expansion in the Southern Hemisphere to ozone depletion, the drivers of Northern Hemisphere expansion are not well known and the expansion has not so far been reproduced by climate models. Here we use a climate model with detailed aerosol physics to show that increases in heterogeneous warming agents--including black carbon aerosols and tropospheric ozone--are noticeably better than greenhouse gases at driving expansion, and can account for the observed summertime maximum in tropical expansion. Mechanistically, atmospheric heating from black carbon and tropospheric ozone has occurred at the mid-latitudes, generating a poleward shift of the tropospheric jet, thereby relocating the main division between tropical and temperate air masses. Although we still underestimate tropical expansion, the true aerosol forcing is poorly known and could also be underestimated. Thus, although the insensitivity of models needs further investigation, black carbon and tropospheric ozone, both of which are strongly influenced by human activities, are the most likely causes of observed Northern Hemisphere tropical expansion.  相似文献   

7.
Observational evidence for an ocean heat pump induced by tropical cyclones   总被引:2,自引:0,他引:2  
Sriver RL  Huber M 《Nature》2007,447(7144):577-580
Ocean mixing affects global climate and the marine biosphere because it is linked to the ocean's ability to store and transport heat and nutrients. Observations have constrained the magnitude of upper ocean mixing associated with certain processes, but mixing rates measured directly are significantly lower than those inferred from budget analyses, suggesting that other processes may play an important role. The winds associated with tropical cyclones are known to lead to localized mixing of the upper ocean, but the hypothesis that tropical cyclones are important mixing agents at the global scale has not been tested. Here we calculate the effect of tropical cyclones on surface ocean temperatures by comparing surface temperatures before and after storm passage, and use these results to calculate the vertical mixing induced by tropical cyclone activity. Our results indicate that tropical cyclones are responsible for significant cooling and vertical mixing of the surface ocean in tropical regions. Assuming that all the heat that is mixed downwards is balanced by heat transport towards the poles, we calculate that approximately 15 per cent of peak ocean heat transport may be associated with the vertical mixing induced by tropical cyclones. Furthermore, our analyses show that the magnitude of this mixing is strongly related to sea surface temperature, indicating that future changes in tropical sea surface temperatures may have significant effects on ocean circulation and ocean heat transport that are not currently accounted for in climate models.  相似文献   

8.
Land-atmosphere coupling and climate change in Europe   总被引:22,自引:0,他引:22  
Seneviratne SI  Lüthi D  Litschi M  Schär C 《Nature》2006,443(7108):205-209
Increasing greenhouse gas concentrations are expected to enhance the interannual variability of summer climate in Europe and other mid-latitude regions, potentially causing more frequent heatwaves. Climate models consistently predict an increase in the variability of summer temperatures in these areas, but the underlying mechanisms responsible for this increase remain uncertain. Here we explore these mechanisms using regional simulations of recent and future climatic conditions with and without land-atmosphere interactions. Our results indicate that the increase in summer temperature variability predicted in central and eastern Europe is mainly due to feedbacks between the land surface and the atmosphere. Furthermore, they suggest that land-atmosphere interactions increase climate variability in this region because climatic regimes in Europe shift northwards in response to increasing greenhouse gas concentrations, creating a new transitional climate zone with strong land-atmosphere coupling in central and eastern Europe. These findings emphasize the importance of soil-moisture-temperature feedbacks (in addition to soil-moisture-precipitation feedbacks) in influencing summer climate variability and the potential migration of climate zones with strong land-atmosphere coupling as a consequence of global warming. This highlights the crucial role of land-atmosphere interactions in future climate change.  相似文献   

9.
气候变化对中国农业的影响   总被引:8,自引:1,他引:7  
 在全球气候变化背景下,中国的气温不断增高,近50年中国年平均地表气温增加了1.1℃,明显高于全球;降水变化趋势不明显,年代际波动较大,也存在明显的地区差别;极端天气气候事件不断增多。未来气候变化情景,预计中国北方增温幅度高于南方,青藏高原增温最明显,年降水量增加显著区域为华北、西北及东北地区,长江中下游沿岸及其以南地区有小幅度增加。气候变暖将使粮食作物水稻、玉米和小麦的生育期缩短,产量下降;有利于棉花生产,能提高北方棉花产量和品质;三熟区面积将扩大约22.4%,一熟区面积约缩小23.1%,作物种植结构和作物品种的布局将发生变化;主要农作物病虫害呈加重趋势;对温带和寒带的家畜生长是有利的,对热带和亚热带家畜和牧草生长不利;中国四大海区主要经济鱼种的产量和渔获量有不同程度的降低;气候变暖将使中国各类自然植被发生明显北移,土地荒漠化危害范围加大,土壤肥力下降,并增加农业灌溉的需水量,农业水资源供需矛盾加剧。中国农业应对气候变化包括减缓和适应两个方面,应减缓和适应并重。  相似文献   

10.
Fang C  Smith P  Moncrieff JB  Smith JU 《Nature》2005,433(7021):57-59
Our understanding of the relationship between the decomposition of soil organic matter (SOM) and soil temperature affects our predictions of the impact of climate change on soil-stored carbon. One current opinion is that the decomposition of soil labile carbon is sensitive to temperature variation whereas resistant components are insensitive. The resistant carbon or organic matter in mineral soil is then assumed to be unresponsive to global warming. But the global pattern and magnitude of the predicted future soil carbon stock will mainly rely on the temperature sensitivity of these resistant carbon pools. To investigate this sensitivity, we have incubated soils under changing temperature. Here we report that SOM decomposition or soil basal respiration rate was significantly affected by changes in SOM components associated with soil depth, sampling method and incubation time. We find, however, that the temperature sensitivity for SOM decomposition was not affected, suggesting that the temperature sensitivity for resistant organic matter pools does not differ significantly from that of labile pools, and that both types of SOM will therefore respond similarly to global warming.  相似文献   

11.
Attribution of observed surface humidity changes to human influence   总被引:3,自引:0,他引:3  
Willett KM  Gillett NP  Jones PD  Thorne PW 《Nature》2007,449(7163):710-712
Water vapour is the most important contributor to the natural greenhouse effect, and the amount of water vapour in the atmosphere is expected to increase under conditions of greenhouse-gas-induced warming, leading to a significant feedback on anthropogenic climate change. Theoretical and modelling studies predict that relative humidity will remain approximately constant at the global scale as the climate warms, leading to an increase in specific humidity. Although significant increases in surface specific humidity have been identified in several regions, and on the global scale in non-homogenized data, it has not been shown whether these changes are due to natural or human influences on climate. Here we use a new quality-controlled and homogenized gridded observational data set of surface humidity, with output from a coupled climate model, to identify and explore the causes of changes in surface specific humidity over the late twentieth century. We identify a significant global-scale increase in surface specific humidity that is attributable mainly to human influence. Specific humidity is found to have increased in response to rising temperatures, with relative humidity remaining approximately constant. These changes may have important implications, because atmospheric humidity is a key variable in determining the geographical distribution and maximum intensity of precipitation, the potential maximum intensity of tropical cyclones, and human heat stress, and has important effects on the biosphere and surface hydrology.  相似文献   

12.
基于归一化植被指数(NDVI), 分析多年不同冻土分布状态下植被生长的年际变化趋势及其与气候因子的相关性差异。结果表明: 1981—2014年, 中国东北多年冻土分布区针叶林的NDVI呈增加趋势, 与生长季温度正相关, 与生长季降水量负相关。随着冻土活动层深度增加, 针叶林NDVI的增加速度自北向南逐渐下降; 草原NDVI在非多年冻土区加速增长, 与生长季降水量正相关。混交林在多年冻土区与非多年冻土区对气候的响应出现明显的差异: 在多年冻土区, 混交林NDVI与生长季温度正相关, 与生长季降水量负相关; 随着冻土活动层加深, 与生长季温度从正相关变为负相关, 与生长季降水量由负相关变为正相关。原因可能与冻土活动层深度差异导致的不同水分供给条件有关。上述结果预示, 在气候–冻土耦合影响下, 未来气候变暖可能会促进针叶林和混交林逐渐北移, 草原可能会更多地占据非多年冻土区。  相似文献   

13.
Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.  相似文献   

14.
Fu Q  Johanson CM  Warren SG  Seidel DJ 《Nature》2004,429(6987):55-58
From 1979 to 2001, temperatures observed globally by the mid-tropospheric channel of the satellite-borne Microwave Sounding Unit (MSU channel 2), as well as the inferred temperatures in the lower troposphere, show only small warming trends of less than 0.1 K per decade (refs 1-3). Surface temperatures based on in situ observations however, exhibit a larger warming of approximately 0.17 K per decade (refs 4, 5), and global climate models forced by combined anthropogenic and natural factors project an increase in tropospheric temperatures that is somewhat larger than the surface temperature increase. Here we show that trends in MSU channel 2 temperatures are weak because the instrument partly records stratospheric temperatures whose large cooling trend offsets the contributions of tropospheric warming. We quantify the stratospheric contribution to MSU channel 2 temperatures using MSU channel 4, which records only stratospheric temperatures. The resulting trend of reconstructed tropospheric temperatures from satellite data is physically consistent with the observed surface temperature trend. For the tropics, the tropospheric warming is approximately 1.6 times the surface warming, as expected for a moist adiabatic lapse rate.  相似文献   

15.
Visser K  Thunell R  Stott L 《Nature》2003,421(6919):152-155
Ocean-atmosphere interactions in the tropical Pacific region have a strong influence on global heat and water vapour transport and thus constitute an important component of the climate system. Changes in sea surface temperatures and convection in the tropical Indo-Pacific region are thought to be responsible for the interannual to decadal climate variability observed in extra-tropical regions, but the role of the tropics in climate changes on millennial and orbital timescales is less clear. Here we analyse oxygen isotopes and Mg/Ca ratios of foraminiferal shells from the Makassar strait in the heart of the Indo-Pacific warm pool, to obtain synchronous estimates of sea surface temperatures and ice volume. We find that sea surface temperatures increased by 3.5-4.0 degrees C during the last two glacial-interglacial transitions, synchronous with the global increase in atmospheric CO2 and Antarctic warming, but the temperature increase occurred 2,000-3,000 years before the Northern Hemisphere ice sheets melted. Our observations suggest that the tropical Pacific region plays an important role in driving glacial-interglacial cycles, possibly through a system similar to how El Ni?o/Southern Oscillation regulates the poleward flux of heat and water vapour.  相似文献   

16.
The covariation of carbon dioxide (CO(2)) concentration and temperature in Antarctic ice-core records suggests a close link between CO(2) and climate during the Pleistocene ice ages. The role and relative importance of CO(2) in producing these climate changes remains unclear, however, in part because the ice-core deuterium record reflects local rather than global temperature. Here we construct a record of global surface temperature from 80 proxy records and show that temperature is correlated with and generally lags CO(2) during the last (that is, the most recent) deglaciation. Differences between the respective temperature changes of the Northern Hemisphere and Southern Hemisphere parallel variations in the strength of the Atlantic meridional overturning circulation recorded in marine sediments. These observations, together with transient global climate model simulations, support the conclusion that an antiphased hemispheric temperature response to ocean circulation changes superimposed on globally in-phase warming driven by increasing CO(2) concentrations is an explanation for much of the temperature change at the end of the most recent ice age.  相似文献   

17.
Detection of human influence on sea-level pressure   总被引:10,自引:0,他引:10  
Gillett NP  Zwiers FW  Weaver AJ  Stott PA 《Nature》2003,422(6929):292-294
Greenhouse gases and tropospheric sulphate aerosols--the main human influences on climate--have been shown to have had a detectable effect on surface air temperature, the temperature of the free troposphere and stratosphere and ocean temperature. Nevertheless, the question remains as to whether human influence is detectable in any variable other than temperature. Here we detect an influence of anthropogenic greenhouse gases and sulphate aerosols in observations of winter sea-level pressure (December to February), using combined simulations from four climate models. We find increases in sea-level pressure over the subtropical North Atlantic Ocean, southern Europe and North Africa, and decreases in the polar regions and the North Pacific Ocean, in response to human influence. Our analysis also indicates that the climate models substantially underestimate the magnitude of the sea-level pressure response. This discrepancy suggests that the upward trend in the North Atlantic Oscillation index (corresponding to strengthened westerlies in the North Atlantic region), as simulated in a number of global warming scenarios, may be too small, leading to an underestimation of the impacts of anthropogenic climate change on European climate.  相似文献   

18.
热带气旋与台风气候变化研究进展   总被引:1,自引:0,他引:1  
 近年来,引起严重灾害的热带气旋和台风气候变化研究均有新的进展:近60年观测资料比对表明,由于海上观测手段不足,造成前期资料可靠性较低,近30~40年资料较为可靠,观测资料的可靠性随热带气旋强度的增强而增加;全球6个洋区观测资料计算分析显示,热带气旋存在多年代际变率,约自1970年以来,强和超强热带气旋活动有增强趋势;统计和动力降尺度方法模拟热带气旋频数和强度与观测检验证实,这些方法具有一定的模拟热带气旋的能力,但尚存比较大的不确定性;利用统计和动力降尺度模型及模式考虑21世纪人类排放增加全球变暖,较为一致地预估西北太平洋和北大西洋强台风(飓风)强度和频数都有可能增强。热带气旋和台风均属于给人类带来巨大灾难的极端气候事件,利用目前的统计和动力降尺度方法很难进行较为准确的未来年以上时间尺度的气候预测和预估,尚需对影响因子和预测与预估方法进行更加深入的研究,进一步减小预测和预估的不确定性。  相似文献   

19.
利用1961~2005年南宁市最高、最低和平均温度资料,分析近50a来南宁市的气温变化特征,通过气候变暖前后灾害性天气气候事件的对比,分析南宁市灾害性天气气候事件的变化规律。结果表明,1961~2005年南宁市年平均气温增温趋势明显,温度变率为0.3C/10a,各季节平均气温均呈上升趋势,秋季增温最明显,冬季次之,夏季位居第三,春季增温最小。年平均最高气温呈较弱的增暖,变率为0.13C/10a,而年平均最低气温的增暖趋势比年平均最高气温明显,为0.36C/10a。年平均日校差的变化则呈递减的趋势,变率为-0.23C/10a。在全球气候增暖和城市化快速发展的过程中,南宁市的灾害性天气气候事件发生了明显的变化:极端强降水有增加趋势,高温天气明显增多,持续高温天气加剧,雷暴和大风日数明显减少,春季低温阴雨天气减少。南宁市灾害性天气气候事件变化的原因可能与全球气候变暖有关,城市化可能是造成南宁市灾害性天气气候事件变化的主要原因。  相似文献   

20.
Based on plant phenology data from 26 stations of the Chinese Phenology Observation Network of the Chinese Academy of Sciences and the climate data, the change of plant phenophase in spring and the impact of climate warming on the plant phenophase in China for the last 40 years are analyzed. Furthermore, the geographical distribution models of phenophase in every decade are reconstructed, and the impact of climate warming on geographical distribution model of phenophase is studied as well. The results show that (ⅰ) the response of phenophase advance or delay to temperature change is nonlinear. Since the 1980s, at the same amplitude of temperature change, phenophase delay amplitude caused by temperature decrease is greater than phenophase advance amplitude caused by temperature increase; the rate of phenophase advance days decreases with temperature increase amplitude, and the rate of phenophase delay days increases with temperature decrease amplitude. (ⅱ) The geographical distribution model between phenophase and geographical location is unstable. Since the 1980s, with the spring temperature increasing in the most of China and decreasing in the south of Qinling Mountains, phenophases have advanced in northeastern China, North China and the lower reaches of the Changjiang River, and have delayed in the eastern part of southwestern China and the middle reaches of the Changjiang River; while the rate of the phenophase difference with latitude becomes smaller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号