首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Meteorology: hurricanes and global warming   总被引:3,自引:0,他引:3  
Landsea CW 《Nature》2005,438(7071):E11-2; discussion E13
Anthropogenic climate change has the potential for slightly increasing the intensity of tropical cyclones through warming of sea surface temperatures. Emanuel has shown a striking and surprising association between sea surface temperatures and destructiveness by tropical cyclones in the Atlantic and western North Pacific basins. However, I question his analysis on the following grounds: it does not properly represent the observations described; the use of his Atlantic bias-removal scheme may not be warranted; and further investigation of a substantially longer time series for tropical cyclones affecting the continental United States does not show a tendency for increasing destructiveness. These factors indicate that instead of "unprecedented" tropical cyclone activity having occurred in recent years, hurricane intensity was equal or even greater during the last active period in the mid-twentieth century.  相似文献   

2.
Increasing destructiveness of tropical cyclones over the past 30 years   总被引:38,自引:0,他引:38  
Emanuel K 《Nature》2005,436(7051):686-688
Theory and modelling predict that hurricane intensity should increase with increasing global mean temperatures, but work on the detection of trends in hurricane activity has focused mostly on their frequency and shows no trend. Here I define an index of the potential destructiveness of hurricanes based on the total dissipation of power, integrated over the lifetime of the cyclone, and show that this index has increased markedly since the mid-1970s. This trend is due to both longer storm lifetimes and greater storm intensities. I find that the record of net hurricane power dissipation is highly correlated with tropical sea surface temperature, reflecting well-documented climate signals, including multi-decadal oscillations in the North Atlantic and North Pacific, and global warming. My results suggest that future warming may lead to an upward trend in tropical cyclone destructive potential, and--taking into account an increasing coastal population--a substantial increase in hurricane-related losses in the twenty-first century.  相似文献   

3.
Booth BB  Dunstone NJ  Halloran PR  Andrews T  Bellouin N 《Nature》2012,484(7393):228-232
Systematic climate shifts have been linked to multidecadal variability in observed sea surface temperatures in the North Atlantic Ocean. These links are extensive, influencing a range of climate processes such as hurricane activity and African Sahel and Amazonian droughts. The variability is distinct from historical global-mean temperature changes and is commonly attributed to natural ocean oscillations. A number of studies have provided evidence that aerosols can influence long-term changes in sea surface temperatures, but climate models have so far failed to reproduce these interactions and the role of aerosols in decadal variability remains unclear. Here we use a state-of-the-art Earth system climate model to show that aerosol emissions and periods of volcanic activity explain 76 per cent of the simulated multidecadal variance in detrended 1860-2005 North Atlantic sea surface temperatures. After 1950, simulated variability is within observational estimates; our estimates for 1910-1940 capture twice the warming of previous generation models but do not explain the entire observed trend. Other processes, such as ocean circulation, may also have contributed to variability in the early twentieth century. Mechanistically, we find that inclusion of aerosol-cloud microphysical effects, which were included in few previous multimodel ensembles, dominates the magnitude (80 per cent) and the spatial pattern of the total surface aerosol forcing in the North Atlantic. Our findings suggest that anthropogenic aerosol emissions influenced a range of societally important historical climate events such as peaks in hurricane activity and Sahel drought. Decadal-scale model predictions of regional Atlantic climate will probably be improved by incorporating aerosol-cloud microphysical interactions and estimates of future concentrations of aerosols, emissions of which are directly addressable by policy actions.  相似文献   

4.
Saunders MA  Lea AS 《Nature》2008,451(7178):557-560
Atlantic hurricane activity has increased significantly since 1995 (refs 1-4), but the underlying causes of this increase remain uncertain. It is widely thought that rising Atlantic sea surface temperatures have had a role in this, but the magnitude of this contribution is not known. Here we quantify this contribution for storms that formed in the tropical North Atlantic, Caribbean Sea and Gulf of Mexico; these regions together account for most of the hurricanes that make landfall in the United States. We show that a statistical model based on two environmental variables--local sea surface temperature and an atmospheric wind field--can replicate a large proportion of the variance in tropical Atlantic hurricane frequency and activity between 1965 and 2005. We then remove the influence of the atmospheric wind field to assess the contribution of sea surface temperature. Our results indicate that the sensitivity of tropical Atlantic hurricane activity to August-September sea surface temperature over the period we consider is such that a 0.5 degrees C increase in sea surface temperature is associated with a approximately 40% increase in hurricane frequency and activity. The results also indicate that local sea surface warming was responsible for approximately 40% of the increase in hurricane activity relative to the 1950-2000 average between 1996 and 2005. Our analysis does not identify whether warming induced by greenhouse gases contributed to the increase in hurricane activity, but the ability of climate models to reproduce the observed relationship between hurricanes and sea surface temperature will serve as a useful means of assessing whether they are likely to provide reliable projections of future changes in Atlantic hurricane activity.  相似文献   

5.
Advancing decadal-scale climate prediction in the North Atlantic sector   总被引:12,自引:0,他引:12  
The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic, and surface-temperature and rainfall variations over North America, Europe and northern Africa. Although these multidecadal variations are potentially predictable if the current state of the ocean is known, the lack of subsurface ocean observations that constrain this state has been a limiting factor for realizing the full skill potential of such predictions. Here we apply a simple approach-that uses only sea surface temperature (SST) observations-to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.  相似文献   

6.
Surface ocean conditions in the equatorial Pacific Ocean could hold the clue to whether millennial-scale global climate change during glacial times was initiated through tropical ocean-atmosphere feedbacks or by changes in the Atlantic thermohaline circulation. North Atlantic cold periods during Heinrich events and millennial-scale cold events (stadials) have been linked with climatic changes in the tropical Atlantic Ocean and South America, as well as the Indian and East Asian monsoon systems, but not with tropical Pacific sea surface temperatures. Here we present a high-resolution record of sea surface temperatures in the eastern tropical Pacific derived from alkenone unsaturation measurements. Our data show a temperature drop of approximately 1 degrees C, synchronous (within dating uncertainties) with the shutdown of the Atlantic meridional overturning circulation during Heinrich event 1, and a smaller temperature drop of approximately 0.5 degrees C synchronous with the smaller reduction in the overturning circulation during the Younger Dryas event. Both cold events coincide with maxima in surface ocean productivity as inferred from 230Th-normalized carbon burial fluxes, suggesting increased upwelling at the time. From the concurrence of equatorial Pacific cooling with the two North Atlantic cold periods during deglaciation, we conclude that these millennial-scale climate changes were probably driven by a reorganization of the oceans' thermohaline circulation, although possibly amplified by tropical ocean-atmosphere interaction as suggested before.  相似文献   

7.
Shevenell AE  Ingalls AE  Domack EW  Kelly C 《Nature》2011,470(7333):250-254
The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica highlight the impact of recent atmospheric and oceanic warming on the cryosphere. Observations and models suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000 years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX(86) sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations. On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability. Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions and El Ni?o/Southern Oscillation variability indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling.  相似文献   

8.
Observational evidence for an ocean heat pump induced by tropical cyclones   总被引:2,自引:0,他引:2  
Sriver RL  Huber M 《Nature》2007,447(7144):577-580
Ocean mixing affects global climate and the marine biosphere because it is linked to the ocean's ability to store and transport heat and nutrients. Observations have constrained the magnitude of upper ocean mixing associated with certain processes, but mixing rates measured directly are significantly lower than those inferred from budget analyses, suggesting that other processes may play an important role. The winds associated with tropical cyclones are known to lead to localized mixing of the upper ocean, but the hypothesis that tropical cyclones are important mixing agents at the global scale has not been tested. Here we calculate the effect of tropical cyclones on surface ocean temperatures by comparing surface temperatures before and after storm passage, and use these results to calculate the vertical mixing induced by tropical cyclone activity. Our results indicate that tropical cyclones are responsible for significant cooling and vertical mixing of the surface ocean in tropical regions. Assuming that all the heat that is mixed downwards is balanced by heat transport towards the poles, we calculate that approximately 15 per cent of peak ocean heat transport may be associated with the vertical mixing induced by tropical cyclones. Furthermore, our analyses show that the magnitude of this mixing is strongly related to sea surface temperature, indicating that future changes in tropical sea surface temperatures may have significant effects on ocean circulation and ocean heat transport that are not currently accounted for in climate models.  相似文献   

9.
Attribution of observed surface humidity changes to human influence   总被引:3,自引:0,他引:3  
Willett KM  Gillett NP  Jones PD  Thorne PW 《Nature》2007,449(7163):710-712
Water vapour is the most important contributor to the natural greenhouse effect, and the amount of water vapour in the atmosphere is expected to increase under conditions of greenhouse-gas-induced warming, leading to a significant feedback on anthropogenic climate change. Theoretical and modelling studies predict that relative humidity will remain approximately constant at the global scale as the climate warms, leading to an increase in specific humidity. Although significant increases in surface specific humidity have been identified in several regions, and on the global scale in non-homogenized data, it has not been shown whether these changes are due to natural or human influences on climate. Here we use a new quality-controlled and homogenized gridded observational data set of surface humidity, with output from a coupled climate model, to identify and explore the causes of changes in surface specific humidity over the late twentieth century. We identify a significant global-scale increase in surface specific humidity that is attributable mainly to human influence. Specific humidity is found to have increased in response to rising temperatures, with relative humidity remaining approximately constant. These changes may have important implications, because atmospheric humidity is a key variable in determining the geographical distribution and maximum intensity of precipitation, the potential maximum intensity of tropical cyclones, and human heat stress, and has important effects on the biosphere and surface hydrology.  相似文献   

10.
Donnelly JP  Woodruff JD 《Nature》2007,447(7143):465-468
The processes that control the formation, intensity and track of hurricanes are poorly understood. It has been proposed that an increase in sea surface temperatures caused by anthropogenic climate change has led to an increase in the frequency of intense tropical cyclones, but this proposal has been challenged on the basis that the instrumental record is too short and unreliable to reveal trends in intense tropical cyclone activity. Storm-induced deposits preserved in the sediments of coastal lagoons offer the opportunity to study the links between climatic conditions and hurricane activity on longer timescales, because they provide centennial- to millennial-scale records of past hurricane landfalls. Here we present a record of intense hurricane activity in the western North Atlantic Ocean over the past 5,000 years based on sediment cores from a Caribbean lagoon that contain coarse-grained deposits associated with intense hurricane landfalls. The record indicates that the frequency of intense hurricane landfalls has varied on centennial to millennial scales over this interval. Comparison of the sediment record with palaeo-climate records indicates that this variability was probably modulated by atmospheric dynamics associated with variations in the El Ni?o/Southern Oscillation and the strength of the West African monsoon, and suggests that sea surface temperatures as high as at present are not necessary to support intervals of frequent intense hurricanes. To accurately predict changes in intense hurricane activity, it is therefore important to understand how the El Ni?o/Southern Oscillation and the West African monsoon will respond to future climate change.  相似文献   

11.
Visser K  Thunell R  Stott L 《Nature》2003,421(6919):152-155
Ocean-atmosphere interactions in the tropical Pacific region have a strong influence on global heat and water vapour transport and thus constitute an important component of the climate system. Changes in sea surface temperatures and convection in the tropical Indo-Pacific region are thought to be responsible for the interannual to decadal climate variability observed in extra-tropical regions, but the role of the tropics in climate changes on millennial and orbital timescales is less clear. Here we analyse oxygen isotopes and Mg/Ca ratios of foraminiferal shells from the Makassar strait in the heart of the Indo-Pacific warm pool, to obtain synchronous estimates of sea surface temperatures and ice volume. We find that sea surface temperatures increased by 3.5-4.0 degrees C during the last two glacial-interglacial transitions, synchronous with the global increase in atmospheric CO2 and Antarctic warming, but the temperature increase occurred 2,000-3,000 years before the Northern Hemisphere ice sheets melted. Our observations suggest that the tropical Pacific region plays an important role in driving glacial-interglacial cycles, possibly through a system similar to how El Ni?o/Southern Oscillation regulates the poleward flux of heat and water vapour.  相似文献   

12.
The increasing intensity of the strongest tropical cyclones   总被引:10,自引:0,他引:10  
Elsner JB  Kossin JP  Jagger TH 《Nature》2008,455(7209):92-95
Atlantic tropical cyclones are getting stronger on average, with a 30-year trend that has been related to an increase in ocean temperatures over the Atlantic Ocean and elsewhere. Over the rest of the tropics, however, possible trends in tropical cyclone intensity are less obvious, owing to the unreliability and incompleteness of the observational record and to a restricted focus, in previous trend analyses, on changes in average intensity. Here we overcome these two limitations by examining trends in the upper quantiles of per-cyclone maximum wind speeds (that is, the maximum intensities that cyclones achieve during their lifetimes), estimated from homogeneous data derived from an archive of satellite records. We find significant upward trends for wind speed quantiles above the 70th percentile, with trends as high as 0.3 +/- 0.09 m s(-1) yr(-1) (s.e.) for the strongest cyclones. We note separate upward trends in the estimated lifetime-maximum wind speeds of the very strongest tropical cyclones (99th percentile) over each ocean basin, with the largest increase at this quantile occurring over the North Atlantic, although not all basins show statistically significant increases. Our results are qualitatively consistent with the hypothesis that as the seas warm, the ocean has more energy to convert to tropical cyclone wind.  相似文献   

13.
A dipole mode in the tropical Indian Ocean   总被引:203,自引:0,他引:203  
For the tropical Pacific and Atlantic oceans, internal modes of variability that lead to climatic oscillations have been recognized, but in the Indian Ocean region a similar ocean-atmosphere interaction causing interannual climate variability has not yet been found. Here we report an analysis of observational data over the past 40 years, showing a dipole mode in the Indian Ocean: a pattern of internal variability with anomalously low sea surface temperatures off Sumatra and high sea surface temperatures in the western Indian Ocean, with accompanying wind and precipitation anomalies. The spatio-temporal links between sea surface temperatures and winds reveal a strong coupling through the precipitation field and ocean dynamics. This air-sea interaction process is unique and inherent in the Indian Ocean, and is shown to be independent of the El Ni?o/Southern Oscillation. The discovery of this dipole mode that accounts for about 12% of the sea surface temperature variability in the Indian Ocean--and, in its active years, also causes severe rainfall in eastern Africa and droughts in Indonesia--brightens the prospects for a long-term forecast of rainfall anomalies in the affected countries.  相似文献   

14.
Chang P  Fang Y  Saravanan R  Ji L  Seidel H 《Nature》2006,443(7109):324-328
El Ni?o, the most prominent climate fluctuation at seasonal-to-interannual timescales, has long been known to have a remote impact on climate variability in the tropical Atlantic Ocean, but a robust influence is found only in the northern tropical Atlantic region. Fluctuations in the equatorial Atlantic are dominated by the Atlantic Ni?o, a phenomenon analogous to El Ni?o, characterized by irregular episodes of anomalous warming during the boreal summer. The Atlantic Ni?o strongly affects seasonal climate prediction in African countries bordering the Gulf of Guinea. The relationship between El Ni?o and the Atlantic Ni?o is ambiguous and inconsistent. Here we combine observational and modelling analysis to show that the fragile relationship is a result of destructive interference between atmospheric and oceanic processes in response to El Ni?o. The net effect of El Ni?o on the Atlantic Ni?o depends not only on the atmospheric response that propagates the El Ni?o signal to the tropical Atlantic, but also on a dynamic ocean-atmosphere interaction in the equatorial Atlantic that works against the atmospheric response. These results emphasize the importance of having an improved ocean-observing system in the tropical Atlantic, because our ability to predict the Atlantic Ni?o will depend not only on our knowledge of conditions in the tropical Pacific, but also on an accurate estimate of the state of the upper ocean in the equatorial Atlantic.  相似文献   

15.
Huang S  Pollack HN  Shen PY 《Nature》2000,403(6771):756-758
For an accurate assessment of the relative roles of natural variability and anthropogenic influence in the Earth's climate, reconstructions of past temperatures from the pre-industrial as well as the industrial period are essential. But instrumental records are typically available for no more than the past 150 years. Therefore reconstructions of pre-industrial climate rely principally on traditional climate proxy records, each with particular strengths and limitations in representing climatic variability. Subsurface temperatures comprise an independent archive of past surface temperature changes that is complementary to both the instrumental record and the climate proxies. Here we use present-day temperatures in 616 boreholes from all continents except Antarctica to reconstruct century-long trends in temperatures over the past 500 years at global, hemispheric and continental scales. The results confirm the unusual warming of the twentieth century revealed by the instrumental record, but suggest that the cumulative change over the past five centuries amounts to about 1 K, exceeding recent estimates from conventional climate proxies. The strength of temperature reconstructions from boreholes lies in the detection of long-term trends, complementary to conventional climate proxies, but to obtain a complete picture of past warming, the differences between the approaches need to be investigated in detail.  相似文献   

16.
Response of the Atlantic thermohaline circulation (THC) to global warming is examined by using the climate system model developed at IAP/LASG. The evidence indicates that the gradually warming climate associated with the increased atmospheric carbon dioxide leads to a warmer and fresher sea surface water at the high latitudes of the North Atlantic Ocean, which prevents the down-welling of the surface water. The succedent reduction of the pole-toequator meridional potential density gradient finally results in the decrease of the THC in intensity. When the atmospheric carbon dioxide is doubled, the maximum value of the Atlantic THC decreases approximately by 8%. The associated poleward oceanic heat transport also becomes weaker. This kind of THC weakening centralizes mainly in the northern part of the North Atlantic basin, indicating briefly a local scale adjustment rather than a loop oscillation with the whole Atlantic “conveyor belt” decelerating.  相似文献   

17.
Evan AT  Kossin JP  Chung CE  Ramanathan V 《Nature》2011,479(7371):94-97
Throughout the year, average sea surface temperatures in the Arabian Sea are warm enough to support the development of tropical cyclones, but the atmospheric monsoon circulation and associated strong vertical wind shear limits cyclone development and intensification, only permitting a pre-monsoon and post-monsoon period for cyclogenesis. Thus a recent increase in the intensity of tropical cyclones over the northern Indian Ocean is thought to be related to the weakening of the climatological vertical wind shear. At the same time, anthropogenic emissions of aerosols have increased sixfold since the 1930s, leading to a weakening of the southwesterly lower-level and easterly upper-level winds that define the monsoonal circulation over the Arabian Sea. In principle, this aerosol-driven circulation modification could affect tropical cyclone intensity over the Arabian Sea, but so far no such linkage has been shown. Here we report an increase in the intensity of pre-monsoon Arabian Sea tropical cyclones during the period 1979-2010, and show that this change in storm strength is a consequence of a simultaneous upward trend in anthropogenic black carbon and sulphate emissions. We use a combination of observational, reanalysis and model data to demonstrate that the anomalous circulation, which is radiatively forced by these anthropogenic aerosols, reduces the basin-wide vertical wind shear, creating an environment more favourable for tropical cyclone intensification. Because most Arabian Sea tropical cyclones make landfall, our results suggest an additional impact on human health from regional air pollution.  相似文献   

18.
Hegerl GC  Crowley TJ  Hyde WT  Frame DJ 《Nature》2006,440(7087):1029-1032
The magnitude and impact of future global warming depends on the sensitivity of the climate system to changes in greenhouse gas concentrations. The commonly accepted range for the equilibrium global mean temperature change in response to a doubling of the atmospheric carbon dioxide concentration, termed climate sensitivity, is 1.5-4.5 K (ref. 2). A number of observational studies, however, find a substantial probability of significantly higher sensitivities, yielding upper limits on climate sensitivity of 7.7 K to above 9 K (refs 3-8). Here we demonstrate that such observational estimates of climate sensitivity can be tightened if reconstructions of Northern Hemisphere temperature over the past several centuries are considered. We use large-ensemble energy balance modelling and simulate the temperature response to past solar, volcanic and greenhouse gas forcing to determine which climate sensitivities yield simulations that are in agreement with proxy reconstructions. After accounting for the uncertainty in reconstructions and estimates of past external forcing, we find an independent estimate of climate sensitivity that is very similar to those from instrumental data. If the latter are combined with the result from all proxy reconstructions, then the 5-95 per cent range shrinks to 1.5-6.2 K, thus substantially reducing the probability of very high climate sensitivity.  相似文献   

19.
热带气旋与台风气候变化研究进展   总被引:1,自引:0,他引:1  
 近年来,引起严重灾害的热带气旋和台风气候变化研究均有新的进展:近60年观测资料比对表明,由于海上观测手段不足,造成前期资料可靠性较低,近30~40年资料较为可靠,观测资料的可靠性随热带气旋强度的增强而增加;全球6个洋区观测资料计算分析显示,热带气旋存在多年代际变率,约自1970年以来,强和超强热带气旋活动有增强趋势;统计和动力降尺度方法模拟热带气旋频数和强度与观测检验证实,这些方法具有一定的模拟热带气旋的能力,但尚存比较大的不确定性;利用统计和动力降尺度模型及模式考虑21世纪人类排放增加全球变暖,较为一致地预估西北太平洋和北大西洋强台风(飓风)强度和频数都有可能增强。热带气旋和台风均属于给人类带来巨大灾难的极端气候事件,利用目前的统计和动力降尺度方法很难进行较为准确的未来年以上时间尺度的气候预测和预估,尚需对影响因子和预测与预估方法进行更加深入的研究,进一步减小预测和预估的不确定性。  相似文献   

20.
Veizer J  Godderis Y  François LM 《Nature》2000,408(6813):698-701
Atmospheric carbon dioxide concentrations are believed to drive climate changes from glacial to interglacial modes, although geological and astronomical mechanisms have been invoked as ultimate causes. Additionally, it is unclear whether the changes between cold and warm modes should be regarded as a global phenomenon, affecting tropical and high-latitude temperatures alike, or if they are better described as an expansion and contraction of the latitudinal climate zones, keeping equatorial temperatures approximately constant. Here we present a reconstruction of tropical sea surface temperatures throughout the Phanerozoic eon (the past approximately 550 Myr) from our database of oxygen isotopes in calcite and aragonite shells. The data indicate large oscillations of tropical sea surface temperatures in phase with the cold-warm cycles, thus favouring the idea of climate variability as a global phenomenon. But our data conflict with a temperature reconstruction using an energy balance model that is forced by reconstructed atmospheric carbon dioxide concentrations. The results can be reconciled if atmospheric carbon dioxide concentrations were not the principal driver of climate variability on geological timescales for at least one-third of the Phanerozoic eon, or if the reconstructed carbon dioxide concentrations are not reliable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号