首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leduc G  Vidal L  Tachikawa K  Rostek F  Sonzogni C  Beaufort L  Bard E 《Nature》2007,445(7130):908-911
Moisture transport from the Atlantic to the Pacific ocean across Central America leads to relatively high salinities in the North Atlantic Ocean and contributes to the formation of North Atlantic Deep Water. This deep water formation varied strongly between Dansgaard/Oeschger interstadials and Heinrich events-millennial-scale abrupt warm and cold events, respectively, during the last glacial period. Increases in the moisture transport across Central America have been proposed to coincide with northerly shifts of the Intertropical Convergence Zone and with Dansgaard/Oeschger interstadials, with opposite changes for Heinrich events. Here we reconstruct sea surface salinities in the eastern equatorial Pacific Ocean over the past 90,000 years by comparing palaeotemperature estimates from alkenones and Mg/Ca ratios with foraminiferal oxygen isotope ratios that vary with both temperature and salinity. We detect millennial-scale fluctuations of sea surface salinities in the eastern equatorial Pacific Ocean of up to two to four practical salinity units. High salinities are associated with the southward migration of the tropical Atlantic Intertropical Convergence Zone, coinciding with Heinrich events and with Greenland stadials. The amplitudes of these salinity variations are significantly larger on the Pacific side of the Panama isthmus, as inferred from a comparison of our data with a palaeoclimate record from the Caribbean basin. We conclude that millennial-scale fluctuations of moisture transport constitute an important feedback mechanism for abrupt climate changes, modulating the North Atlantic freshwater budget and hence North Atlantic Deep Water formation.  相似文献   

2.
The Atlantic meridional overturning circulation is widely believed to affect climate. Changes in ocean circulation have been inferred from records of the deep water chemical composition derived from sedimentary nutrient proxies, but their impact on climate is difficult to assess because such reconstructions provide insufficient constraints on the rate of overturning. Here we report measurements of 231Pa/230Th, a kinematic proxy for the meridional overturning circulation, in a sediment core from the subtropical North Atlantic Ocean. We find that the meridional overturning was nearly, or completely, eliminated during the coldest deglacial interval in the North Atlantic region, beginning with the catastrophic iceberg discharge Heinrich event H1, 17,500 yr ago, and declined sharply but briefly into the Younger Dryas cold event, about 12,700 yr ago. Following these cold events, the 231Pa/230Th record indicates that rapid accelerations of the meridional overturning circulation were concurrent with the two strongest regional warming events during deglaciation. These results confirm the significance of variations in the rate of the Atlantic meridional overturning circulation for abrupt climate changes.  相似文献   

3.
Knutti R  Flückiger J  Stocker TF  Timmermann A 《Nature》2004,430(7002):851-856
The climate of the last glacial period was extremely variable, characterized by abrupt warming events in the Northern Hemisphere, accompanied by slower temperature changes in Antarctica and variations of global sea level. It is generally accepted that this millennial-scale climate variability was caused by abrupt changes in the ocean thermohaline circulation. Here we use a coupled ocean-atmosphere-sea ice model to show that freshwater discharge into the North Atlantic Ocean, in addition to a reduction of the thermohaline circulation, has a direct effect on Southern Ocean temperature. The related anomalous oceanic southward heat transport arises from a zonal density gradient in the subtropical North Atlantic caused by a fast wave-adjustment process. We present an extended and quantitative bipolar seesaw concept that explains the timing and amplitude of Greenland and Antarctic temperature changes, the slow changes in Antarctic temperature and its similarity to sea level, as well as a possible time lag of sea level with respect to Antarctic temperature during Marine Isotope Stage 3.  相似文献   

4.
Tropical South America is one of the three main centres of the global, zonal overturning circulation of the equatorial atmosphere (generally termed the 'Walker' circulation). Although this area plays a key role in global climate cycles, little is known about South American climate history. Here we describe sediment cores and down-hole logging results of deep drilling in the Salar de Uyuni, on the Bolivian Altiplano, located in the tropical Andes. We demonstrate that during the past 50,000 years the Altiplano underwent important changes in effective moisture at both orbital (20,000-year) and millennial timescales. Long-duration wet periods, such as the Last Glacial Maximum--marked in the drill core by continuous deposition of lacustrine sediments--appear to have occurred in phase with summer insolation maxima produced by the Earth's precessional cycle. Short-duration, millennial events correlate well with North Atlantic cold events, including Heinrich events 1 and 2, as well as the Younger Dryas episode. At both millennial and orbital timescales, cold sea surface temperatures in the high-latitude North Atlantic were coeval with wet conditions in tropical South America, suggesting a common forcing.  相似文献   

5.
Cane MA  Molnar P 《Nature》2001,411(6834):157-162
Global climate change around 3-4 Myr ago is thought to have influenced the evolution of hominids, via the aridification of Africa, and may have been the precursor to Pleistocene glaciation about 2.75 Myr ago. Most explanations of these climatic events involve changes in circulation of the North Atlantic Ocean due to the closing of the Isthmus of Panama. Here we suggest, instead, that closure of the Indonesian seaway 3-4 Myr ago could be responsible for these climate changes, in particular the aridification of Africa. We use simple theory and results from an ocean circulation model to show that the northward displacement of New Guinea, about 5 Myr ago, may have switched the source of flow through Indonesia-from warm South Pacific to relatively cold North Pacific waters. This would have decreased sea surface temperatures in the Indian Ocean, leading to reduced rainfall over eastern Africa. We further suggest that the changes in the equatorial Pacific may have reduced atmospheric heat transport from the tropics to higher latitudes, stimulating global cooling and the eventual growth of ice sheets.  相似文献   

6.
Rapid freshening of the deep North Atlantic Ocean over the past four decades   总被引:15,自引:0,他引:15  
Dickson B  Yashayaev I  Meincke J  Turrell B  Dye S  Holfort J 《Nature》2002,416(6883):832-837
The overflow and descent of cold, dense water from the sills of the Denmark Strait and the Faroe Shetland channel into the North Atlantic Ocean is the principal means of ventilating the deep oceans, and is therefore a key element of the global thermohaline circulation. Most computer simulations of the ocean system in a climate with increasing atmospheric greenhouse-gas concentrations predict a weakening thermohaline circulation in the North Atlantic as the subpolar seas become fresher and warmer, and it is assumed that this signal will be transferred to the deep ocean by the two overflows. From observations it has not been possible to detect whether the ocean's overturning circulation is changing, but recent evidence suggests that the transport over the sills may be slackening. Here we show, through the analysis of long hydrographic records, that the system of overflow and entrainment that ventilates the deep Atlantic has steadily changed over the past four decades. We find that these changes have already led to sustained and widespread freshening of the deep ocean.  相似文献   

7.
Sachs JP  Anderson RF 《Nature》2005,434(7037):1118-1121
Massive iceberg discharges from the Northern Hemisphere ice sheets, 'Heinrich events', coincided with the coldest periods of the last ice age. There is widespread evidence for Heinrich events and their profound impact on the climate and circulation of the North Atlantic Ocean, but their influence beyond that region remains uncertain. Here we use a combination of molecular fingerprints of algal productivity and radioisotope tracers of sedimentation to document eight periods of increased productivity in the subpolar Southern Ocean during the past 70,000 years that occurred within 1,000-2,000 years of a Northern Hemisphere Heinrich event. We discuss possible causes for such a link, including increased supply of iron from upwelling and increased stratification during the growing season, which imply an alteration of the global ocean circulation during Heinrich events. The mechanisms linking North Atlantic iceberg discharges with subantarctic productivity remain unclear at this point. We suggest that understanding how the Southern Ocean was altered during these extreme climate perturbations is critical to understanding the role of the ocean in climate change.  相似文献   

8.
Knorr G  Lohmann G 《Nature》2003,424(6948):532-536
During the two most recent deglaciations, the Southern Hemisphere warmed before Greenland. At the same time, the northern Atlantic Ocean was exposed to meltwater discharge, which is generally assumed to reduce the formation of North Atlantic Deep Water. Yet during deglaciation, the Atlantic thermohaline circulation became more vigorous, in the transition from a weak glacial to a strong interglacial mode. Here we use a three-dimensional ocean circulation model to investigate the impact of Southern Ocean warming and the associated sea-ice retreat on the Atlantic thermohaline circulation. We find that a gradual warming in the Southern Ocean during deglaciation induces an abrupt resumption of the interglacial mode of the thermohaline circulation, triggered by increased mass transport into the Atlantic Ocean via the warm (Indian Ocean) and cold (Pacific Ocean) water route. This effect prevails over the influence of meltwater discharge, which would oppose a strengthening of the thermohaline circulation. A Southern Ocean trigger for the transition into an interglacial mode of circulation provides a consistent picture of Southern and Northern hemispheric climate change at times of deglaciation, in agreement with the available proxy records.  相似文献   

9.
Schmidt MW  Vautravers MJ  Spero HJ 《Nature》2006,443(7111):561-564
Geochemical and sedimentological evidence suggest that the rapid climate warming oscillations of the last ice age, the Dansgaard-Oeschger cycles, were coupled to fluctuations in North Atlantic meridional overturning circulation through its regulation of poleward heat flux. The balance between cold meltwater from the north and warm, salty subtropical gyre waters from the south influenced the strength and location of North Atlantic overturning circulation during this period of highly variable climate. Here we investigate how rapid reorganizations of the ocean-atmosphere system across these cycles are linked to salinity changes in the subtropical North Atlantic gyre. We combine Mg/Ca palaeothermometry and oxygen isotope ratio measurements on planktonic foraminifera across four Dansgaard-Oeschger cycles (spanning 45.9-59.2 kyr ago) to generate a seawater salinity proxy record from a subtropical gyre deep-sea sediment core. We show that North Atlantic gyre surface salinities oscillated rapidly between saltier stadial conditions and fresher interstadials, covarying with inferred shifts in the Tropical Atlantic hydrologic cycle and North Atlantic overturning circulation. These salinity oscillations suggest a reduction in precipitation into the North Atlantic and/or reduced export of deep salty thermohaline waters during stadials. We hypothesize that increased stadial salinities preconditioned the North Atlantic Ocean for a rapid return to deep overturning circulation and high-latitude warming by contributing to increased North Atlantic surface-water density on interstadial transitions.  相似文献   

10.
Schmidt MW  Spero HJ  Lea DW 《Nature》2004,428(6979):160-163
Variations in the strength of the North Atlantic Ocean thermohaline circulation have been linked to rapid climate changes during the last glacial cycle through oscillations in North Atlantic Deep Water formation and northward oceanic heat flux. The strength of the thermohaline circulation depends on the supply of warm, salty water to the North Atlantic, which, after losing heat to the atmosphere, produces the dense water masses that sink to great depths and circulate back south. Here we analyse two Caribbean Sea sediment cores, combining Mg/Ca palaeothermometry with measurements of oxygen isotopes in foraminiferal calcite in order to reconstruct tropical Atlantic surface salinity during the last glacial cycle. We find that Caribbean salinity oscillated between saltier conditions during the cold oxygen isotope stages 2, 4 and 6, and lower salinities during the warm stages 3 and 5, covarying with the strength of North Atlantic Deep Water formation. At the initiation of the B?lling/Aller?d warm interval, Caribbean surface salinity decreased abruptly, suggesting that the advection of salty tropical waters into the North Atlantic amplified thermohaline circulation and contributed to high-latitude warming.  相似文献   

11.
Advancing decadal-scale climate prediction in the North Atlantic sector   总被引:12,自引:0,他引:12  
The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic, and surface-temperature and rainfall variations over North America, Europe and northern Africa. Although these multidecadal variations are potentially predictable if the current state of the ocean is known, the lack of subsurface ocean observations that constrain this state has been a limiting factor for realizing the full skill potential of such predictions. Here we apply a simple approach-that uses only sea surface temperature (SST) observations-to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.  相似文献   

12.
Partin JW  Cobb KM  Adkins JF  Clark B  Fernandez DP 《Nature》2007,449(7161):452-455
Models and palaeoclimate data suggest that the tropical Pacific climate system plays a key part in the mechanisms underlying orbital-scale and abrupt climate change. Atmospheric convection over the western tropical Pacific is a major source of heat and moisture to extratropical regions, and may therefore influence the global climate response to a variety of forcing factors. The response of tropical Pacific convection to changes in global climate boundary conditions, abrupt climate changes and radiative forcing remains uncertain, however. Here we present three absolutely dated oxygen isotope records from stalagmites in northern Borneo that reflect changes in west Pacific warm pool hydrology over the past 27,000 years. Our results suggest that convection over the western tropical Pacific weakened 18,000-20,000 years ago, as tropical Pacific and Antarctic temperatures began to rise during the early stages of deglaciation. Convective activity, as inferred from oxygen isotopes, reached a minimum during Heinrich event 1 (ref. 10), when the Atlantic meridional overturning circulation was weak, pointing to feedbacks between the strength of the overturning circulation and tropical Pacific hydrology. There is no evidence of the Younger Dryas event in the stalagmite records, however, suggesting that different mechanisms operated during these two abrupt deglacial climate events. During the Holocene epoch, convective activity appears to track changes in spring and autumn insolation, highlighting the sensitivity of tropical Pacific convection to external radiative forcing. Together, these findings demonstrate that the tropical Pacific hydrological cycle is sensitive to high-latitude climate processes in both hemispheres, as well as to external radiative forcing, and that it may have a central role in abrupt climate change events.  相似文献   

13.
Since the mid-nineteenth century the Earth's surface has warmed, and models indicate that human activities have caused part of the warming by altering the radiative balance of the atmosphere. Simple theories suggest that global warming will reduce the strength of the mean tropical atmospheric circulation. An important aspect of this tropical circulation is a large-scale zonal (east-west) overturning of air across the equatorial Pacific Ocean--driven by convection to the west and subsidence to the east--known as the Walker circulation. Here we explore changes in tropical Pacific circulation since the mid-nineteenth century using observations and a suite of global climate model experiments. Observed Indo-Pacific sea level pressure reveals a weakening of the Walker circulation. The size of this trend is consistent with theoretical predictions, is accurately reproduced by climate model simulations and, within the climate models, is largely due to anthropogenic forcing. The climate model indicates that the weakened surface winds have altered the thermal structure and circulation of the tropical Pacific Ocean. These results support model projections of further weakening of tropical atmospheric circulation during the twenty-first century.  相似文献   

14.
Turney CS  Kershaw AP  Clemens SC  Branch N  Moss PT  Fifield LK 《Nature》2004,428(6980):306-310
The El Ni?o/Southern Oscillation (ENSO) phenomenon is believed to have operated continuously over the last glacial-interglacial cycle. ENSO variability has been suggested to be linked to millennial-scale oscillations in North Atlantic climate during that time, but the proposals disagree on whether increased frequency of El Ni?o events, the warm phase of ENSO, was linked to North Atlantic warm or cold periods. Here we present a high-resolution record of surface moisture, based on the degree of peat humification and the ratio of sedges to grass, from northern Queensland, Australia, covering the past 45,000 yr. We observe millennial-scale dry periods, indicating periods of frequent El Ni?o events (summer precipitation declines in El Ni?o years in northeastern Australia). We find that these dry periods are correlated to the Dansgaard-Oeschger events--millennial-scale warm events in the North Atlantic climate record--although no direct atmospheric connection from the North Atlantic to our site can be invoked. Additionally, we find climatic cycles at a semiprecessional timescale (approximately 11,900 yr). We suggest that climate variations in the tropical Pacific Ocean on millennial as well as orbital timescales, which determined precipitation in northeastern Australia, also exerted an influence on North Atlantic climate through atmospheric and oceanic teleconnections.  相似文献   

15.
Slowdown of the meridional overturning circulation in the upper Pacific Ocean   总被引:44,自引:0,他引:44  
McPhaden MJ  Zhang D 《Nature》2002,415(6872):603-608
Decadal temperature fluctuations in the Pacific Ocean have a significant effect on marine ecosystems and the climate of North America. The physical mechanisms responsible for these fluctuations are poorly understood. Some theories ascribe a central role to the wind-driven meridional overturning circulation between the tropical and subtropical oceans. Here we show, from observations over the past 50 years, that this overturning circulation has been slowing down since the 1970s, causing a decrease in upwelling of about 25% in an equatorial strip between 9 degrees N and 9 degrees S. This reduction in equatorial upwelling of relatively cool water, from 47 x 10(6) to 35 x 10(6) m3 s(-1), is associated with a rise in equatorial sea surface temperatures of about 0.8 degrees C. Another effect of the slowing circulation is a reduction in the outgassing of CO2 from the equatorial Pacific Ocean-at present the largest oceanic source of carbon dioxide to the atmosphere.  相似文献   

16.
Reversed flow of Atlantic deep water during the Last Glacial Maximum   总被引:1,自引:0,他引:1  
The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies and recent model simulations indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic (231)Pa/(230)Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in (231)Pa/(230)Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of (231)Pa/(230)Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC-with a prominent southerly flow of deep waters originating in the North Atlantic-arose only during the Holocene epoch.  相似文献   

17.
Hall A  Stouffer RJ 《Nature》2001,409(6817):171-174
Temperature reconstructions from the North Atlantic region indicate frequent abrupt and severe climate fluctuations during the last glacial and Holocene periods. The driving forces for these events are unclear and coupled atmosphere-ocean models of global circulation have only simulated such events by inserting large amounts of fresh water into the northern North Atlantic Ocean. Here we report a drastic cooling event in a 15,000-yr simulation of global circulation with present-day climate conditions without the use of such external forcing. In our simulation, the annual average surface temperature near southern Greenland spontaneously fell 6-10 standard deviations below its mean value for a period of 30-40 yr. The event was triggered by a persistent northwesterly wind that transported large amounts of buoyant cold and fresh water into the northern North Atlantic Ocean. Oceanic convection shut down in response to this flow, concentrating the entire cooling of the northern North Atlantic by the colder atmosphere in the uppermost ocean layer. Given the similarity between our simulation and observed records of rapid cooling events, our results indicate that internal atmospheric variability alone could have generated the extreme climate disruptions in this region.  相似文献   

18.
Brandt P  Funk A  Hormann V  Dengler M  Greatbatch RJ  Toole JM 《Nature》2011,473(7348):497-500
Climate variability in the tropical Atlantic Ocean is determined by large-scale ocean-atmosphere interactions, which particularly affect deep atmospheric convection over the ocean and surrounding continents. Apart from influences from the Pacific El Ni?o/Southern Oscillation and the North Atlantic Oscillation, the tropical Atlantic variability is thought to be dominated by two distinct ocean-atmosphere coupled modes of variability that are characterized by meridional and zonal sea-surface-temperature gradients and are mainly active on decadal and interannual timescales, respectively. Here we report evidence that the intrinsic ocean dynamics of the deep equatorial Atlantic can also affect sea surface temperature, wind and rainfall in the tropical Atlantic region and constitutes a 4.5-yr climate cycle. Specifically, vertically alternating deep zonal jets of short vertical wavelength with a period of about 4.5?yr and amplitudes of more than 10?cm?s(-1) are observed, in the deep Atlantic, to propagate their energy upwards, towards the surface. They are linked, at the sea surface, to equatorial zonal current anomalies and eastern Atlantic temperature anomalies that have amplitudes of about 6?cm?s(-1) and 0.4?°C, respectively, and are associated with distinct wind and rainfall patterns. Although deep jets are also observed in the Pacific and Indian oceans, only the Atlantic deep jets seem to oscillate on interannual timescales. Our knowledge of the persistence and regularity of these jets is limited by the availability of high-quality data. Despite this caveat, the oscillatory behaviour can still be used to improve predictions of sea surface temperature in the tropical Atlantic. Deep-jet generation and upward energy transmission through the Equatorial Undercurrent warrant further theoretical study.  相似文献   

19.
Tarasov L  Peltier WR 《Nature》2005,435(7042):662-665
The last deglaciation was abruptly interrupted by a millennial-scale reversal to glacial conditions, the Younger Dryas cold event. This cold interval has been connected to a decrease in the rate of North Atlantic Deep Water formation and to a resulting weakening of the meridional overturning circulation owing to surface water freshening. In contrast, an earlier input of fresh water (meltwater pulse 1a), whose origin is disputed, apparently did not lead to a reduction of the meridional overturning circulation. Here we analyse an ensemble of simulations of the drainage chronology of the North American ice sheet in order to identify the geographical release points of freshwater forcing during deglaciation. According to the simulations with our calibrated glacial systems model, the North American ice sheet contributed about half the fresh water of meltwater pulse 1a. During the onset of the Younger Dryas, we find that the largest combined meltwater/iceberg discharge was directed into the Arctic Ocean. Given that the only drainage outlet from the Arctic Ocean was via the Fram Strait into the Greenland-Iceland-Norwegian seas, where North Atlantic Deep Water is formed today, we hypothesize that it was this Arctic freshwater flux that triggered the Younger Dryas cold reversal.  相似文献   

20.
The International Geosphere Biosphere Program (IGBP), which promotes better understanding of the living environment, was initiated in the early 1990s. IGBP and other programs have uncovered much evi-dence that the Earth system is complex and nonlinear, ex…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号