首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
采用非等温DSC法对超支化聚酯基二茂铁/环氧树脂固化体系的固化反应热行为及固化动力学进行了研究,分别利用Kissinger和Ozawa动力学模型计算得到各体系固化反应的表观活化能,利用Crane模型计算出固化反应级数,通过固化体系的DSC数据确定了体系的固化工艺为100 ℃2 h→140 ℃2 h→160 ℃1 h,并通过TG及DSC测试了在该工艺固化后复合材料的5%热失重温度在287~330 ℃,玻璃化转变温度在105.29~130.27 ℃之间,具有良好的热性能.   相似文献   

2.
以对甲酚-苯胺型苯并噁嗪为模型化合物,玉米秸秆木质素为固化催化剂,用1H-NMR研究木质素催化苯并噁嗪的聚合机理。随后将木质素与双酚A-苯胺型苯并噁嗪共混,得到不同木质素质量分数(0、0.5%、1%、2%、5%)的共混体系。通过DSC研究了共混体系的固化行为,并用DMA、TGA对固化产物热性能进行测试。结果表明:在木质素催化作用下,苯并噁嗪首先开环聚合生成含苯氧结构和Mannich桥结构的中间体,而苯氧结构中间体不稳定,会重排生成Mannich桥结构的最终产物;木质素的引入显著降低了苯并噁嗪的固化温度,且随着木质素含量的增加,共混体系的起始固化温度和固化峰值温度均逐渐降低;与聚苯并噁嗪相比,共混体系固化产物的玻璃化转变温度升高,分解温度略有下降,800 ℃时的残炭率有所提高。  相似文献   

3.
八马来酰亚胺基苯基POSS/BT树脂固化行为   总被引:2,自引:0,他引:2  
合成了八马来酰亚胺基苯基POSS(OMPS),并对产物进行了测试表征。将OMPS与4,4′-双马来酰亚胺基二苯甲烷(BMI)/双酚A型氰酸酯(BCE)(BT树脂)进行共混,差示量热扫描仪(DSC)和傅立叶红外光谱仪(FT-IR)测试结果表明,在220℃左右,OMPS/BT树脂固化反应能充分进行;在140~220℃范围内分段固化,动态粘弹分析仪(DMA)测试结果显示固化后树脂的Tg不高,250℃下固化1h后,DMA测试结果显示Tg有明显提高。OMPS/BT树脂复合材料的介电测试结果显示,加入适量的OMPS能明显降低BT树脂的介电常数。  相似文献   

4.
聚苯并噁嗪预聚体的结构与固化行为的研究   总被引:4,自引:1,他引:3  
采用以甲苯为溶剂的溶液法合成了一种成环率高的聚苯并噁嗪预聚体即聚双 (3,4-二氢-3-苯基-1-,3-苯并噁嗪)预聚体, 通过1H-NMR、FT-IR、GPC和DSC对预聚体的结构和固化行为进行了研究。结果表明 ,该预聚体的成环率与溶剂的极性有关, 溶剂极性越强, 成环率越低; 成环率对预聚体的固化温度和Tg有一定的影响, 成环率越低, 预聚体的固化温度越低, 其固化产物的Tg越低。  相似文献   

5.
以4-氨基苯氧邻苯二甲腈(BZN)、间氨基苯乙炔(APA)和多聚甲醛为原料制备了含氰基和乙炔基的苯并噁嗪树脂(BZ-BPA)。利用差示扫描量热法(DSC)、傅里叶变换红外光谱法(F T-IR)、热重分析法(TGA)分析了BZ-BPA的固化行为,得到:BZ-BPA在固化反应过程中存在两个放热峰(225℃和274℃);在氮气氛围下,BZ-BPA固化物热失重5%的温度(T d5)为502.6℃,800℃时质量残留率为79.8%;在空气氛围下,T d5为506.0℃,800℃时质量残留率为29.6%。采用Kissinger法计算得到两个固化反应的表观活化能(E):E1=228.31 kJ/mol,E2=87.97 kJ/mol;由Ozawa法计算得到:E1=225.98 kJ/mol,E2=92.26 kJ/mol;固化反应接近一级反应。考察了石英纤维增强的BZ-BPA复合材料(QF/BZ-BPA)的力学性能和耐热性能,结果显示:QF/BZ-BPA的玻璃化转变温度(Tg)为476℃;在常温下其弯曲强度为764.2 MPa,层间剪切强度为57.3 MPa;在400℃热处理2 h后,其弯曲强度为614.5 MPa,层间剪切强度为38.1 MPa;400℃热处理10 h后,其质量损失仅为2.4%。以上结果表明BZ-BPA复合材料具有优异的力学性能和耐热性能。  相似文献   

6.
以4-氨基苯氧邻苯二甲腈(BZN)、间氨基苯乙炔(APA)和多聚甲醛为原料制备了含氰基和乙炔基的苯并噁嗪树脂(BZ-BPA)。利用差示扫描量热法(DSC)、傅里叶变换红外光谱法(F T-IR)、热重分析法(TGA)分析了BZ-BPA的固化行为,得到:BZ-BPA在固化反应过程中存在两个放热峰(225℃和274℃);在氮气氛围下,BZ-BPA固化物热失重5%的温度(T d5)为502.6℃,800℃时质量残留率为79.8%;在空气氛围下,T d5为506.0℃,800℃时质量残留率为29.6%。采用Kissinger法计算得到两个固化反应的表观活化能(E):E1=228.31 kJ/mol,E2=87.97 kJ/mol;由Ozawa法计算得到:E1=225.98 kJ/mol,E2=92.26 kJ/mol;固化反应接近一级反应。考察了石英纤维增强的BZ-BPA复合材料(QF/BZ-BPA)的力学性能和耐热性能,结果显示:QF/BZ-BPA的玻璃化转变温度(Tg)为476℃;在常温下其弯曲强度为764.2 MPa,层间剪切强度为57.3 MPa;在400℃热处理2 h后,其弯曲强度为614.5 MPa,层间剪切强度为38.1 MPa;400℃热处理10 h后,其质量损失仅为2.4%。以上结果表明BZ-BPA复合材料具有优异的力学性能和耐热性能。  相似文献   

7.
采用差示扫描量热法(DSC)对高压绝缘拉杆用环氧树脂体系进行固化动力学研究,得到了相应的动力学方程。探究了促进剂用量对树脂体系固化动力学参数的影响,结果表明:随着促进剂用量的提高,体系的固化温度整体呈现逐渐降低的趋势,活化能逐渐减小。当促进剂用量(质量分数)为0.5%时,固化后产物Tg达到最高值106.3 ℃。  相似文献   

8.
聚氨酯改性TDE-85/MeTHPA体系的固化反应   总被引:1,自引:0,他引:1  
采用聚氨酯预聚体、扩链剂和交联剂对TDE-85/甲基四氢邻苯二甲酸酐(MeTHPA)树脂进行改性,通过红外光谱和示差扫描量热法(DSC)分析,探讨聚氨酯(PU)改性TDE-85/MeTHPA树脂体系固化反应。研究表明:固化反应的表观活化能由TDE-85/MeTHPA树脂体系的83.14 kJ/mol降至PU改性TDE-85/MeTHPA树脂体系的67.91 kJ/mol。确定的PU改性TDE-85/MeTHPA树脂体系合适的固化工艺条件为:120℃,2 h 140℃,2 h 160℃,2 h。在该固化工艺制度条件下,PU改性TDE-85/MeTHPA体系固化反应完全,能满足固化工艺要求。  相似文献   

9.
超声电机用环氧摩擦材料固化动力学研究   总被引:2,自引:0,他引:2  
应用差示扫描量热(DSC)技术研究了超声电机驱动用的TGDDM/MTHPA环氧摩擦材料的固化动力学.对添加了聚四氟乙烯(PTFE)、碳纤维、石墨、MoS2等填料的环氧摩擦材料固化体系在不同升温速率下得到的DSC曲线进行分析,运用Kissinger方程和Crane方程确定了体系反应级数和表观活化能,并将峰温Tp和结束温度Te外推至升温速率为零,得到理论固化温度Tcure和固化后处理温度Ttreat.结果表明反应级数与二甲基苄胺(DMBA)用量无关,约为0.90;表观活化能随着DMBA量的增加先降后升,用量为1.0%时达到最小;Tcure、Ttreat分别为130℃、153.8℃.按照上述优化配方和固化工艺制备的环氧摩擦材料装配行波超声电机(TRUMΦ-60)机械性能良好,使用寿命可达8000h以上.  相似文献   

10.
三羟甲基庚烷的合成   总被引:1,自引:0,他引:1  
为制备新型芳香缓释聚氨酯微胶囊合成了两亲性单体三羟甲基庚烷。以氢氧化钠为催化剂,辛醛和甲醛在较低温度下发生羟醛缩合反应生成2,2-二羟甲基辛醛。提高温度后,2,2-二羟甲基辛醛与甲醛发生康尼扎罗反应生成三羟甲基庚烷。研究了催化剂种类和用量、原料配比、羟醛缩合和康尼扎罗反应温度和反应时间对三羟甲基庚烷摩尔产率的影响。结果表明,优化的合成三羟甲基庚烷的反应条件是n甲醛/n辛醛=4.5,n(NaOH)/n辛醛=1.4,羟醛缩合反应温度和时间分别为35℃和240min,康尼扎罗反应温度和时间分别为55℃和180min,摩尔产率可达88%。用13C核磁共振谱表征了三羟甲基庚烷的化学结构。  相似文献   

11.
环氧/氰酸酯体系的固化反应动力学   总被引:4,自引:0,他引:4  
用K issinger法对环氧/氰酸酯体系进行动力学研究,得到了不同催化剂作用下的反应活化能、反应级数和频率因子。研究表明:加入催化剂后各样品的固化反应活化能都有所降低,其中乙酰丙酮铜可使反应活化能下降30%,催化反应的级数为2;钛酸四正丁酯、二丁基二月桂酸锡和乙酰丙酮钴也能降低固化反应活化能15%以上,二丁基二月桂酸锡和乙酰丙酮钴能大幅降低固化反应温度。以钛酸四正丁酯、二丁基二月桂酸锡催化与不加催化剂的氰酸酯/环氧体系的固化反应级数均为1。钛酸四正丁酯催化氰酸酯与环氧树脂的固化交联反应是一步连续进行的,而以其他催化剂催化和不加催化剂的固化反应是二步交替进行的。  相似文献   

12.
苯酚双环戊二烯环氧树脂的合成与固化性能研究   总被引:2,自引:0,他引:2  
以苯酚和双环戊二烯为原料,通过Friedel-Crafts反应,合成了双环戊二烯酚树脂(DPR)。用环氧氯丙烷对该树脂进行环氧化,还制得了含有双环戊二烯结构的环氧树脂(DER)。系统地考察了合成反应的条件,所得环氧树脂的最大环氧值为0.31~0.35,有机氯含量小于0.02mol/100g。用红外光谱考察了以甲基六氢苯酐(MeHHPA)为固化剂时该树脂在180 ℃时的固化速度,固化3.5 h时, 环氧开环的转化率大于92%。DSC的分析表明DER与双酚A环氧树脂E51混合(质量比为1:1),固化树脂的玻璃化转变温度Tg比E51固化树脂的玻璃化转变温度高15 ℃。  相似文献   

13.
采用柱分离法对液态双酚A环氧树脂E51进行分离,得到分子量为340的单组分环氧树脂,并对其进行了IR、NMR和ESI-MS表征。研究了E51环氧树脂及单组分环氧树脂与DDS的固化反应动力学,采用DSC测定了E51环氧树脂和单组分环氧树脂与DDS固化体系的固化反应表观活化能,分别为134.85和152.15kJ/mol。通过对2种体系固化产物的Tg分析,结果表明E51/DDS固化产物的Tg比单组分环氧树脂/DDS固化产物的Tg低约10℃,分别为202.2和212.4℃。  相似文献   

14.
以乌桕梓油生物柴油为对象,研究了不饱和脂肪酸甲酯二聚体的制备及聚酰胺树脂的合成。结果表明,二聚体合成最优工艺条件为:催化剂膨润土加入量12%(质量分数),催化助剂LiCl 0.8%(质量分数),反应温度220℃,反应时间6 h。在此条件下,二聚体收率为75.2%。以上述所得二聚体进一步制备聚酰胺树脂,并将其应用于环氧树脂固化体系中,对聚酰胺树脂固化物产品进行DSC、耐热性和力学性能测试。结果表明,当聚酰胺与环氧树脂固化体系质量比为0.6∶1时,固化反应最完全,固化物产品的耐热性能最高,抗冲击、弯曲及剪切性能最强,其性能与市售同类产品相当。  相似文献   

15.
反应性聚碳酸酯增韧改性环氧树脂的相结构与性能   总被引:2,自引:0,他引:2  
研究了反应性聚碳酸酯 /环氧树脂体系中胺化聚碳酸酯的用量对固化体系的形态结构、玻璃化转变温度 Tg 和力学性能的影响 .用 SEM和 AFM对固化体系的形态进行了表征 .结果表明 ,固化体系的相容性良好 ,形成一个均相网络结构 .对胺化聚碳酸酯改性环氧树脂的体系与纯环氧树脂体系的力学性能进行了比较 ,发现前者断裂韧性和冲击韧性分别提高了 50 %和 4 4% ,而弯曲性能变化不大 ,拉伸性能有所下降 .DSC的测试结果表明增韧体系的 Tg 下降 .  相似文献   

16.
本文研究了4,4′-二氨基二苯砜四缩水甘油基环氧树脂(AS-70树脂)与4,4′-二氨基二苯甲烷的固化反应。采用DSC法测定了固化反应热效应和反应速率,求得固化反应活化能为51.5KJ/mol;用TGA测定了浇铸体的热分解温度,表明AS-T70树脂的耐热性较好;用FT-IR跟踪固化反应过程中环氧基团特征吸收峰(906cm~(-1))的变化,求得的固化反应速率与DSC法测定的结果较吻合。  相似文献   

17.
间苯二胺固化环氧树脂凝胶现象研究   总被引:6,自引:0,他引:6  
环氧树脂凝胶固化是一个复杂的化学过程,树脂的凝胶时间是影响其固化特性能的重要因素之一,将Flory凝胶点理论与固化反应动力学相结合,实现了对树脂凝胶时间的预测,实验结果与理论预测相当吻合,固化剂的结构和活性对树脂的凝胶固化起着重要作用,间苯二胺与树脂等比配制,所得固化环氧 脂的玻璃化温度最高,并运用差示扫描量热仪和红外光谱对固化脂进行了分析。  相似文献   

18.
热固性高固体分丙烯酸酯树脂的合成和改性研究   总被引:1,自引:0,他引:1  
摘要:以BPO和AIBN为引发剂,在引发剂用量分别为2.5%和8%(质量分数)时合成了羟基丙烯酸酯树脂,并用丙烯酸环氧酯改性.用甲醚化三聚氰胺甲醛树脂固化羟基丙烯酸酯树脂,固化过程的DSC曲线表明树脂为中低温固化.测试了系列树脂的分子量和粘度以及树脂固化涂膜的机械性能,耐化学试剂性能和热稳定性能等.发现并讨论了在引发剂BPO用量提高到较高浓度时树脂的分子量和粘度增加的现象.改性后羟基丙烯酸酯树脂固化涂膜具有良好的机械性能,耐酸性能得到明显提高,热稳定性也有一定的提高.  相似文献   

19.
合成了双酚F环氧/环硫树脂,采用元素分析、红外光谱分析和核磁共振光谱分析确定了合成树脂的结构,对比研究了环硫基团/环氧基团为0/100、15/85和50/50(质量比)的双酚F环硫/环氧树脂与脂环胺DMDC固化剂体系的固化行为。通过差示扫描量热仪(DSC)、动态力学热分析仪(DMTA)等手段研究了固化剂配比对体系固化程度、固化物的模量和玻璃化转变温度的影响,结果显示:当环硫基团质量分数从0分别增加到15%和50%时,环硫/环氧树脂/胺体系不仅固化速度加快,且固化剂用量相应减少约15%和50%,说明胺基与环硫基团开环反应形成的—SH或—S-可作为固化剂进一步与环氧基团和环硫基团进行开环反应;另一方面,固化物的模量和玻璃化转变温度有所提高,说明环硫树脂固化物交联网络更密集,也证明了环硫/环氧树脂的固化反应行为与环氧树脂存在不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号