首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
本文是文献[9],[10]的继续。在本文中,我们研究了(AC)算子,可分解算子,谱算子以及它们之间的关系。证明了:(1)若T∈B(X)是(AC)算子,对于每个E,F∈F,有则T是可分解算子。(2)T∈B(X)是谱算子当且仅当T是(AC)算子且满足下述条件:(ⅰ)对每个Borel子集δ,δ∈B,有X_T(δ)=X_T((δ∩δ)⊕此处⊕表示直接和;(ⅱ)对每个x∈X,数集是有界的,此处(3)若是(H)空间,是可分解算子,则下述条件是等价的:(ⅰ)(E)(ⅱ)①从推出(此处P_F是从到_T(F)上直交射影,⊕表示直交和)。它是B.L.Wadhwa定理的新形式。  相似文献   

2.
设A和B是拟相似算子,△是Wolf本性谱σ_c(B)的任一个连通成分。本文证明了△∩σ_■(A)∩σ_■(B)≠φ及△∩(σ_■(A)∩σ_■(B))≠φ。并证明了若△σ_K(B)的一个连通成分,则△∩(σ_F(A)∩σ_F(B))≠φ等价于△∩(σ_■(A)∩σ_■(B))≠φ,进而给出△∩σ_■(A)∩σ_■(B)≠φ的充要条件,其中σ_K(T)=σ_■(T)∩σ_■(T),σ_■(T)=σ_K(T)\(P'_∞(T)~0∪P'_(∞∞)(T)~0),P'_∞(T)={λ∈C:v(T-λ)-μ(T-λ)=±∞},P_(∞∞)~'(T)={λ∈C:v(T-λ)=μ(T-λ)=∞}。  相似文献   

3.
设X,Y是复的Banach空间,在一个上三角算子矩阵Mc=A C0 B∈B(XY)中,A∈B(X),B∈B(Y)是事先给定的,对于任意的C∈B(Y,X),Mc的左(右)Browder谱:lσb(Mc)={λ∈C:Mc)-λB (XY)},B (XY)={T∈Φ (XY):asc(T)<∞},(rσb(Mc)={λ∈C:Mc)-λ■B-(XY)},B-(XY)={T∈Φ-(XY):des(T)<∞}).文中得到lσb(Mc)(rσb(Mc))与lσb(A)∪lσb(B)|rσb(A)∪rσb(B))之间存在有趣的填洞现象,即σ*(A)∪σ*(B)=σ*(Mc)∪W.其中,W是σ*(Mc)的某些洞的并σ*∈{lσb,rσb},并找出洞W的具体位置.  相似文献   

4.
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体.T∈B(H)称为满足(R1)性质,若σa(T)\σab(T)?π00(T),其中σa(T)和σab(T)分别表示算子T的逼近点谱和本质逼近点谱,π00(T)={λ∈isoσ(T):0相似文献   

5.
研究了Hilbert空间X⊕X中的无穷维Hamilton算子HC=[A C 0 -A*]和HF=[A F B -A*]的纯虚谱的扰动,其中R(B)是闭的.给定算子A,B,证明了∩C∈S(X)σi(HC)=σiπ(A),∪C∈S(X)σi(HC)=σi(A),∩F∈S(X)σi(HF)=σiπ(APR(B)⊥),∪F∈S(X)σi(HF)=σi(APR(B)⊥),其中σi(T),σiπ(T),PM和S(X)分别表示T的纯虚谱,纯虚近似谱,全空间到M的正交投影和X中的所有自伴算子所成之集.  相似文献   

6.
令H为无限维复可分的Hilbert空间,H上有界线性算子的全体为B(H).用σ(T),σab(T)和σa(T)分别表示为算子T∈B(H)的谱集,Browder本质逼近点谱和逼近点谱.称算子T∈B(H)满足(R)性质,若σa(T)σab(T)=π00(T),其中π00(T)={λ∈iso σ(T)∶0相似文献   

7.
在本文中,我们引入封闭可分解算子和封闭算子的谱容量的概念。并证明了如下的结果:(i)如果 T∈Q(X)(Q(X)表示复 Banach 空间 X 上有非空豫解集的封闭算子(不一定稠定)的全体)是2-可分解的,那末:(a)T 有 S(?)EP。(b)σ(T)=σ_(?)(T)。(c)对任意的开集 G((?)C),存在 Y∈SM(T)。使得(?)(d)(0) ∈SM(T)。(e)对于任意非零的 Y∈INV(T),σ(T|Y)≠(?)。(f)若 Y∈INV(T)且σ(T|Y)有界,那末 Y(?)D_T。(g)如果对于任意的 x∈D_T,σ(x,T)都是相界的,那末 T∈B(X)。(ii)如果 T∈Q(X),那末下列四条等价:(a)T 有2-谱容量;(b)T 有谱容量;(e)T2-可分解;(d)T 可分解并且,T 强可分解必须且只须 T 有强谱容量。(iii)如果 T∈Q(X)有2-谱容量 E,那末(a)suppE=σ(T)。(b)对任意的闭集 F(?)C,E(F)=X_T(F)∈SM(T)。  相似文献   

8.
令H为复的无限维可分的Hilbert空间, B(H)为H上有界线性算子的全体。称算子T∈B(H)满足Weyl定理, 若σ(T)\σw(T)=π00(T), 其中σ(T)和σw(T)分别表示算子T的谱集与Weyl谱, π00(T)={λ∈iso σ(T):0相似文献   

9.
设A∈B(ye),B∈B(k),C∈(B)((k),(ye))给定,对X∈B((ye),(k))定义Mx=(AXCB)ye( )k→ye( )(k).在一定条件下刻画集合∩X∈B((k),(ye))σl(Mx)和∩X∈B((k),(ye))σl(Mx),其中σl(T)和σr(T)分别表示算子T的左谱和右谱.利用了算子矩阵的分块技巧和算子分块的几何结构.在C是闭值域的条件下,完全刻画了∩X∈B((k),(ye))σl(Mx)和∩X∈B((k),(ye))σl(Mx).此刻画在缺项算子矩阵的谱的研究中是新的结果,应用该刻画可以得到若干已知结论.  相似文献   

10.
吴树宏 《广西科学》2007,14(4):352-353
给出Bergman空间Lap(Ω)={f∈H(Ω):f=∫(Ωf(x)pdm(x))1/p<∞}上复合算子下有界的一个充分条件φ(Ω)=Ω,sup/z∈Ω│detJφ(z)│<∞,和一个必要条件φ(Ω)=Ω,其中φ是Ω到自身的解析映射.  相似文献   

11.
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体, T∈B(H)称为满足(R)性质,若σa(T)\σab(T)=π00(T),其中σa(T)和σab(T)分别表示算子T的逼近点谱和Browder本质逼近点谱,π00(T)={λ∈iso σ(T):0<dim N(T-λI)<∞}。 利用拓扑一致降标性质,首先给出了有界线性算子满足(R)性质的充要条件; 之后通过拓扑一致降标性质,得到了算子函数满足(R)性质的判定方法; 最后,上三角算子矩阵的(R)性质得到了研究。  相似文献   

12.
C.Apostol[1]证明了下面的定理A.设T为作用在复Hilbert空明月上的算子,σ为ρ_(S-F)~S(T)的有限子集,那未存在T的不变子空间Y,Z,使得(i)Y∩Z={0},Y+Z=H,dim Z=sp dim(β;T);(ii)σ(Tz)=σ,sp dim(λ;Tz)=sp dim(λ;T),λ∈σ;(iii)ρ_(S-F)~r(T)=ρ_(S-F)~r(F)∩σ。本文的目的是把上术定理推广到Banach空间。  相似文献   

13.
本文建立了有界线性算子的一种函数演算,并得到了这种演算的谱映射定理: 引理1 设T∈D(X)-B(X),ρ(T)≠Φ,则存在S∈B(X)及ξ∈C,λ∈σ_c(S),使T=f_(ξ,λ)(S) 定理1 设T∈B(X),则对ξ∈C,λ∈σ_c(T), 我们有: 1)σ(f_(ξ,λ)(T))=f_(ξ,λ)(σ(T)); 2)σ(f_(ξ,λ)(T)(x)=f_(ξ,λ)(σ_T(x)),x∈X 通过这种演算,可以把无界封闭线性算子表示成有界线性算子函数。利用这种函数演算和相应的谱映射定理,我们证明了无界封闭线性算子是可分解(谱)算子的充要条件是它是有界可分解(谱)算子的函数。  相似文献   

14.
令X表示复Banach空间,B(X)为X上的有界线性算子的Banach代数,C(X)为定义在X中的闭算子全体_∞表示扩充的复平面_∞=∪{∞}。设T∈C(Z),其定义域记为D(T),e(T)表示T的豫解集:λ∈ρ(T)(λI-T)~(-1)∈B(X),σ(T)=\ρ(T)与σ_∞(T)=_∞\ρ(T)分别为T的谱与扩充谱。总假定ρ(T)≠φ且∞ρ(T)。(T)表示在σ_∞(T)的某领域上解析上的函数所构成的集合。对于给定的α∈ρ(T),记  相似文献   

15.
本文给出Dirichlet空间上斜Toeplitz算子的定义,讨论斜Toeplitz算子的交换性和谱等,证明:若ψ,φ∈H∞1(D),则BψBφ=BφBψ的充要条件是ψ、φ在H∞1(D)中线性相关;若ψ,ψ-1∈H∞1(D),则σp(Bψ)=σp(Bψ(x2)).  相似文献   

16.
算子T∈B(H)称作有(ω1)性质,如果σa(T)\σea(T)(∈)00(T),其中σa(T)和σea(T)分别表示算子T的逼近点谱和本性逼近点谱,π00(T)={λ∈iso σ(T):0<dim N(T-λI)<∞}.本文研究了Helton类算子的(ω1)性质的稳定性,同时研究了2x2上三角算子矩阵在紧摄动下的(ω1)性质的稳定性.  相似文献   

17.
设H为复的无限维可分Hilbert空间,B(H)为H上有界线性算子的全体.若σ(T)\σw(T)=πoo(T),则称T∈B(H)满足Weyl定理,其中σ(T)和σw(T)分别表示算子T的谱和Weyl谱,πroo(T)={λ∈isoσ(T):0dimN(T-λI)∞};当σ(T)\σw(T)∈roo(T)时,称T∈B(H)满足Browder定理.本文利用算子的广义Kato分解性质,刻画了算子在微小紧摄动下单值延拓性质(SVEP)与Weyl型定理之间的关系.  相似文献   

18.
讨论了一类本性正常算子的(U K)-轨道的闭包:(U K)(T)↑-。具体地讲,如果T是一个具有正常加紧形式的三角算子,且它的本性谱是完备的,对角线以上部分是紧的,得出结论:A∈L(H),A∈(U K)(T)↑-的充要条件是:(1)A∈Nor(H) K(H);(2)σ(A)增包含σ(T),σ0(A)增包含于σ0(T),σe(A)=σe(T);(3)ind(λ-A)=ind(λ-T),A↓λ∈ρs-F(A)=ρs-F(A)=ρF(A);(4)nul(λ-A)≥nul(λ-T),A↓∈ρs-F(A);(5)如果λ∈σe(A)则rankE(λ;T)。除此之外,如果T是一个双三角的本性正常算子,它的谱σ(T)=σe(T)=σ是C的一个完备集,则A∈(U K)(T)↑当且仅当A满足:(1)A∈Nor(H) K(H);(2)σ(A)增包含σ(T)是完备的;(3)σe(A)=σe(A)=σe(T),且对任意的λ∈ρs-F(A),ind(λ-A)=0。  相似文献   

19.
令H为无限维复可分的Hilbert空间, B(H)为H上有界线性算子的全体。 若σa(T)\σea(T)=πa00(T),称算子T∈B(H)满足a-Weyl定理,其中σa(T)、σea(T)分别表示T的逼近点谱、本质逼近点谱, πa00(T)={λ∈iso σa(T):0a-Weyl定理的新的判定方法, 并讨论相关谱集的谱映射定理。  相似文献   

20.
研究了Hilbert空间上有界线性算子T的Weyl型定理的判定方法及等价性.根据一致Fredholm指标性质,定义了一种新的谱集2σ(T),通过该谱集和拓扑一致降标集ρτ(T)之间的关系,证明了:算子T满足Browder定理当且仅当ρτ(T)bρ(T)∪1σ(T)∪2σ(T);T满足Weyl定理当且仅当0π0(T)ρτ(T)bρ(T)∪1σ(T)∪2σ(T),其中bρ(T)={λ∈C:T-λI为Browder算子},1σ(T)为本质逼近点谱的一种变化,0π0(T)为谱集中孤立的有限重的特征值的全体;算子T与T*均满足a-Browder定理当且仅当ρτ(T)aρb(T)∪2σ(T)∪intSσF(T)∪{λ∈C:des(T-λI)∞},其中aρb(T)={λ∈C:T-λI为上半Fredholm算子且有有限的升标},SσF(T)和des(T)分别表示算子T的半Fredholm谱以及降标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号