首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 930 毫秒
1.
The as-cast Mg–6Li–4Zn-xMn alloys were prepared and extruded at 280 ​°C with an extrusion ratio of 25:1. The effects of Mn content on the microstructure and mechanical properties of Mg–6Li–4Zn-xMn alloys were investigated in this study. The XRD results show that Mg–6Li–4Zn–xMn alloys consisted of α-Mg (hcp) ​+ ​β-Li (bcc) duplex structured matrix, MgLi2Zn and Mn phases. The grains of the extruded Mg–6Li–4Zn–xMn alloys were refined by dynamic recrystallization during the extrusion process. The EBSD results show that the extruded alloys had basal textures. The grain size of the extruded alloys decreased while the basal texture was strengthened with the increasing Mn addition. The TEM results show that a large amount of nanoscale Mn precipitates existed in the extruded Mg–6Li–4Zn–1.2Mn alloy, which can effectively inhibit the dynamic recrystallized (DRXed) grains growth during the hot extrusion and is beneficial to the improvement of mechanical properties. Mg–6Li–4Zn–1.2Mn alloy in this research possesses the best mechanical properties with the ultimate tensile strength and yield strength of 321 ​MPa, 250 ​MPa, respectively.  相似文献   

2.
Effects of Al addition to a Mg–Sn–Ca ternary alloy on its microstructure and tensile properties after extrusion were studied via extrusion of Mg-1.0Sn-0.5Ca-xAl (x ​= ​0, 0.8, 2.4 ​wt%) sheets and analysis of the extruded materials. The results showed that Al addition not only refined the grain size (from 9.8 ​± ​0.7 ​μm to 8.3 ​± ​0.4 ​μm and 7.6 ​± ​0.5 ​μm) but also accelerated the generation of more second phase (from 0.98 to 1.72 and 4.32%). Except for the CaMgSn and Mg2Ca in Mg-1.0Sn-0.5Ca alloy, new phase (Mg, Al)2Ca appeared after Al addition. The addition of Al into Mg–Sn–Ca alloy induced the textural variation from an initially ED-split double-peaked texture to a weakened texture, i.e., divergent elliptical texture, due to the effect of particle stimulated nucleation. This eventually contributed to the improvement of mechanical anisotropy as well as the higher Hc value and n-value. For the strain hardening behavior when tension along the TD, the prolonged stage Ⅱ of Al-modified alloys was closely connected with the additional TD textural components, accelerating the activation of more basal slip. The decreased θⅢ0 in stage Ⅲ of Al-modified alloys is beneficial to the grain refinement and the emergence of more second phase.  相似文献   

3.
In this study, effects of initial orientation on microstructure evolution and mechanical properties of AZ31 Mg alloy sheets via accumulated extrusion bonding(AEB) was systematically studied. The samples with RD and TD parallel to extrusion direction(ED) were labeled as RED and TED, respectively. RD and TD pieces alternately stacked was named as RTED. The results revealed that under three-dimensional compressive stress, {10-12} tensile twinning dominated the first stage deformation in container. ...  相似文献   

4.
对固溶处理的GWZ721(Mg-7Gd-2Y-1Zn-0.4Zr)镁合金坯锭在400 ℃进行热挤压变形,获得T型材。采用光学显微镜(optical microscope,OM)、扫描电子显微镜(scanning electron microscope,SEM)和电子背散射衍射仪(electron back scatter diffraction,EBSD)等设备,研究了挤压变形过程中该挤压锭不同部位的金属流变组织特点。结果表明:坯锭在挤压加载时组织发生大量孪生变形,进入模具型腔时发生明显动态再结晶和挤出后发生显著静态再结晶;其平均晶粒尺寸逐渐得到细化,第二相被破碎细化并弥散分布于基体中;形成了基面平行于挤压方向的织构,其最大相对强度先由弱变强然后再变弱;试制得到T型材的横截面显微组织均匀,晶粒尺寸细小,存在较弱的基面织构。  相似文献   

5.
Relative contribution of individual strengthening mechanisms to the yield strength of Mg–0–15 wt%Gd alloys were investigated.Alloys with different grain size were prepared by adding Zr and hot extrusion.Hardness and tensile/compression yield strength were tested on the alloys after solid solution treatment and extrusion.HallPetch constants were calculated with hardness and tensile/compressive data.The results showed that the hardness of Mg–Gd alloys with similar Gd content and different grain size were almost the same,which indicates that grain size had little effect on hardness.The hardness linearly increased with rising Gd content(d H_v/dc≈25 kg mm~(-2)/at%Gd).The tensile and compressive yield strengths enhanced with the increase of Gd content for all alloys in different conditions.In addition,the tensile/compressive(t/c)yield asymmetry of extruded alloys decreased with increasing Gd content.Large t/c yield asymmetry ratio(1.77)was observed for pure Mg,and with increasing Gd content this value decreased to 1.With the increasing of tensile strength,the stress intensity factor,k_y,decreased from 0.27 MPa m~(1/2)for Mg–2 wt%Gd alloy to 0.19 MPa m~(1/2) for Mg–5 wt%Gd alloy,then increased to 0.29 MPa m~(1/2) for Mg–15 wt%Gd alloy.However,k_yincreased linearly form 0.16–0.31 MPa for compression test.The influence of grain size strengthening was eliminated,and the yield strength of tension and compression both linearly increased with c~n,where c is the atom concentration of Gd,and n=1/2 or 2/3.  相似文献   

6.
The effects of Sn addition(0, 0.5, 1.0, 2.0 and 3 wt%) on microstructure of Mg-4Zn-1.5Al alloy in cast and extruded states were investigated, and the mechanical properties of as-extruded Mg-4Zn-1.5Al-xSn studied. The experimental results showed that the as-cast Mg-4Zn-1.5Al alloy was composed of two phases α-Mg and Mg_(32)(Al, Zn)_(49), while Sn-containing alloys consisted of α-Mg, Mg_(32)(Al, Zn)_(49) and Mg_2Sn phases, and Mg_(32)(Al, Zn)_(49) was not detected after extruding due to that the most of them dissolved into the matrix during the homogenized treatment. The addition of Sn refined the grains of as-cast and as-extruded Mg-Zn-Al alloys obviously. It was noted that the basal texture intensity reduced with increasing Sn content significantly in as-extruded Mg-Zn-Al alloys. The tensile tests results indicated that Sn addition improve the tensile strength of the extruded alloys,while it had a harmful effect on the ductility. When the addition of Sn was 2 wt%, the ultimate tensile strength(UTS), yield strength(YS) and elongation(ε_f) of the alloy were 280 MPa, 147 MPa and 17.4%, respectively.  相似文献   

7.
Mg–Sn–Y alloys with different Sn contents (wt%) were assessed as anode candidates for Mg-air batteries. The relationship between microstructure (including the second phase, grain size, and texture) and discharge properties of the Mg–Sn–Y alloys was examined using mi-crostructure observation, electrochemical measurements, and galvanostatic discharge tests. The Mg–0.7Sn–1.4Y alloy had a high steady dis-charge voltage of 1.5225 V and a high anodic efficiency of 46.6% at 2.5 mA·cm?2. These good properties were related to its microstructure:small grain size of 3.8 μm, uniform distribution of small second phase particles of 0.6 μm, and a high content (vol%) of (11(2)0)/(10(1)0) orient-ated grains. The scanning Kelvin probe force microscopy (SKPFM) indicated that the Sn3Y5 and MgSnY phases were effective cathodes caus-ing micro-galvanic corrosion which promoted the dissolution of Mg matrix during the discharge process.  相似文献   

8.
对新型变形镁合金Mg-6%Zn-1%Mn铸锭在320、360、420℃等不同温度下进行挤压实验,成型后实施不同热处理,并分析不同状态下合金的微观组织和力学性能.结果表明:在320~420℃条件下,该合金能实现平稳地挤压成型并完成动态再结晶.挤压温度越低,再结晶晶粒越细小,挤压棒材性能越好.高温(420℃)挤压成型,动态再结晶越易进行,且再结晶晶粒越均匀,更有利于后期通过热处理改善合金性能.  相似文献   

9.
镁合金AZ31动态再结晶行为的取向成像分析   总被引:1,自引:0,他引:1  
利用背散射电子衍射(EBSD)取向成像技术分析了具有不同初始织构的镁合金AZ31动态再结晶晶粒的取向特征以及与相邻的形变晶粒的取向关系.结果表明:不同初始织构以及不同应变量下动态再结晶新晶粒与形变晶粒的取向都相近,说明动态再结晶以连续方式进行,即亚晶转动方式.随形变量的增加,不同初始织构试样的晶粒都转向基面取向,但菊池带衬度图像显示大的形变晶粒内部很少有亚晶界存在并且菊池带质量高,说明塑性滑移机制仍在起很大作用但在靠近晶界处发生,形变晶粒是通过平行于压缩面方向剪切晶界而逐渐消失的.动态再结晶晶粒与相邻形变晶粒的取向差表明不同初始织构造成不同的取向差,但总的趋势是相同的.  相似文献   

10.
采用铸锭冶金工艺,制备不同钪含量的Al-Cu-Mg-Ag合金.通过金相显微镜、扫描电镜、透射电镜、晶间腐蚀及剥落腐蚀等实验方法,研究钪对Al-5.3Cu-0.8Mg-0.6Ag合金的组织和腐蚀性能影响.结果表明:添加0.3%~0.5% Sc可明显细化铸态合金的晶粒,平均晶粒尺寸从300 μm降低到60 μm,而添加0.1%~0.3% Sc有助于提高挤压态合金抗腐蚀性能.但当添加0.5% Sc时,合金中形成粗大的Al3(Sc, Zr)稀土化合物相,导致合金的抗蚀性能降低.  相似文献   

11.
采用X射线衍射、扫描电子显微镜、光学显微镜、室温拉伸和浸泡失重法研究了挤压态纯Zn和Zn-0.2Mg-xCa(x=0,0.06,0.15,0.3)(质量分数)合金微观组织、力学性能和体外降解速率.结果表明:200℃挤压后,纯Zn晶粒尺寸达到100μm;Zn-0.2Mg-xCa合金中晶粒尺寸均维持在15~20μm之间,并存在第二相Mg2Zn11和CaZn13.随着Ca含量增加,CaZn13含量逐渐增加,且当Ca质量分数达到0.15%以上时CaZn13尺寸达到15~50μm.纯Zn的屈服强度和延伸率分别为64MPa和14%,Zn-0.2Mg-xCa合金随着Ca含量增加屈服强度由180MPa提高到约200MPa,延伸率则逐渐由18%降低到6%.纯Zn和Zn-0.2Mg-xCa合金在SBF溶液中降解速率维持在0.05~0.15mm·a-1,而且随Ca的添加降解速率略有降低.  相似文献   

12.
利用自行开发的连续变断面挤压新工艺设备,以工业纯铝为研究对象,进行了连续变断面挤压实验,研究了挤压制品的组织.结果表明:由于连续变断面挤压制品长度方向上各点的挤压比不同,各点的显微晶粒度也不同,晶粒随挤压比的增大而减小,在截面单一变化的试样中这种现象尤为明显;在同一截面上挤压制品的组织也不均匀,晶粒的尺寸由试样外层到中部逐渐变大,外层组织多为细小晶粒,中部组织多为粗大晶粒;由于热处理工艺的原因,部分组织还会发生二次再结晶,出现晶粒的异常长大现象.实验揭示了变断面挤压制品晶粒尺寸的变化规律.  相似文献   

13.
Al-Mg alloys are an important class of non-heat treatable alloys in which Mg solute and grain size play essential role in their mechanical properties and plastic deformation behaviors.In this work,a cyclical continuous expanded extrusion and drawing(CCEED)process was proposed and implemented on an Al-3Mg alloy to introduce large plastic deformation.The results showed that the continuous expanded extrusion mainly improved the ductility,while the cold drawing enhanced the strength of the alloy.With the increased processing CCEED passes,the multi-pass cross shear deformation mechanism progressively improved the homogeneity of the hardness distributions and refined grain size.Continuous dynamic recrystallization played an important role in the grain refinement of the processed Al-3Mg alloy rods.Besides,the microstructural evolution was basically influenced by the special thermomechanical deformation conditions during the CCEED process.  相似文献   

14.
铈对AZ31镁合金铸态组织的影响   总被引:1,自引:0,他引:1  
研究了Ce对AZ31镁合金铸态组织的影响.研究结果表明:添加0.5~1.5 wt%Ce到AZ31镁合金中不但不能细化舍金的晶粒,反而使合金的晶粒变得粗大,并且粗化趋势受Ce加入量的影响较大.当添加0.5 wt%Ce到AZ31镁合金中后,合金的平均晶粒尺寸从最初的60靘增大到164靘.此后,随着Ce加入量从0.5 wt%增加到1.5 wt%,合金的平均晶粒尺寸又开始逐渐减小,但仍大于未添加Ce合金的平均晶粒尺寸.  相似文献   

15.
The recrystallization behavior of deformed Ti40 alloy during a heat-treatment process was studied using electron backscatter diffraction and optical microscopy. The results show that the microstructural evolution of Ti40 alloy is controlled by the growth behavior of grain-boundary small grains during the heating process. These small grains at the grain boundaries mostly originate during the forging process because of the alloy’s inhomogeneous deformation. During forging, the deformation first occurs in the grain-boundary region. New small recrystallized grains are separated from the parent grains when the orientation between deformation zones and parent grains exceeds a certain threshold. During the heating process, the growth of these small recrystallized grains results in a uniform grain size and a decrease in the average grain size. The special recrystallization behavior of Ti40 alloy is mainly a consequence of the alloy’s high β-stabilized elemental content and high solution strength of the β-grains, which partially explains the poor hot working ability of Ti–V–Cr-type burn-resistant titanium alloys. Notably, this study on Ti40 burn-resistant titanium alloy yields important information related to the optimization of the microstructures and mechanical properties.  相似文献   

16.
AZ31 magnesium alloy sheets were prepared by a conventional extrusion (CE) and a novel integrated extrusion with side direction strain (SE). The microstructure characterizations, crystallographic texture and mechanical property tests were carried out and compared between the extruded Mg alloy sheets processed by CE and SE. The results indicated that the SE sheets exhibited an excellent combination of strength and ductility. To reveal the side strain effect, the finite element model was employed to investigate the effective stress and strain behavior of the AZ31 magnesium alloy sheets during CE and SE processes. It was found that the SE process was effective in weakening the stress and strain concentration. This implied that it developed an additional side direction strain through the sheet thickness during the hot extrusion. Meanwhile, the side strain shear paths could promote the local accumulation of dynamically recrystallized grains and increase the random high-angle boundaries to achieve weak (0002) basal texture. Important factors including the side strain path and extrusion parameters need to be taken into account to understand the deformation mechanism and microstructure evolution.  相似文献   

17.
本研究分析了挤压温度和挤压比对 Mg–5Zn–1.5Y 合金的显微组织、硬度、压缩和腐蚀行为的影响。显微组织观察表明,铸造合金由α-Mg晶粒和Mg3Zn6Y和Mg3Zn3Y2金属间化合物组成,主要位于α-Mg晶界上。较高温度下的挤压合金显示出较粗的晶粒微观结构,而以较高比率挤压的合金含有较细的微观结构,尽管在两种条件下都测量到具有较低金属间化合物的更多动态再结晶晶粒。较低温度 (340°C) 和较高比率 (1:11.5) 的组合条件提供了较高的抗压强度。然而,没有实现显着的硬度改善。挤压工艺可以降低铸造合金在模拟体液中的腐蚀率超过 80%,这主要是由于细化了微观结构。与挤压比相比,挤压温度对耐腐蚀性能的影响更为显着,挤压温度越高,耐腐蚀性能越高。  相似文献   

18.
Commercial Al-3Ti-1C and Al-5Ti-1B master alloys were added in order to refine the grains of Mg-Li-Al alloys.The effects of their addition levels on grain refinement of Mg-Li-Al cast alloy were investigated and the mechanism of the grain refinement was discussed.The results showed that the addition of Al-3Ti-1C master alloy reduced the grain size of LA141 cast alloy from 900μm to 400μm,while the addition of Al-5Ti-1B master alloy reduced the grain size of LA51 cast alloy from 500μm to 240μm.The grain ref...  相似文献   

19.
The effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–xZn–0.2Ca alloys (x=0.6wt%, 2.0wt%, 2.5wt%, hereafter denoted as 0.6Zn, 2.0Zn, and 2.5Zn alloys, respectively) are investigated. The results show that the Zn content not only influences grain refinement but also induces different phase precipitation behaviors. The as-cast microstructure of the 0.6Zn alloy is composed of α-Mg, Mg2Ca, and Ca2Mg6Zn3 phases, whereas 2.0Zn and 2.5Zn alloys only contain α-Mg and Ca2Mg6Zn3 phases, as revealed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Moreover, with increasing Zn content, both the ultimate tensile strength (UTS) and the elongation to fracture first increase and then decrease. Among the three investigated alloys, the largest UTS (178 MPa) and the highest elongation to fracture (6.5%) are obtained for the 2.0Zn alloy. In addition, the corrosion rate increases with increasing Zn content. This paper provides an updated investigation of the alloy composition–microstructure–property relationships of different Zn-containing Mg–Zn–Ca alloys.  相似文献   

20.
The influence of the microstructure on mechanical properties and corrosion behavior of the Mg–1.21Li–1.12Ca–1Y alloy was investigated using OM, SEM, XRD, EPMA, EDS, tensile tests and corrosion measurements. The results demonstrated that the microstructure of the Mg–1.21Li–1.12Ca–1Y alloy was characterized by α-Mg substrate and intermetallic compounds Mg2 Ca and Mg24Y5. Most of the fine Mg2 Ca particles for the as-cast alloy were distributed along the grain boundaries, while for the as-extruded along the extrusion direction. The Mg24Y5 particles with a larger size than the Mg2 Ca particles were positioned inside the grains. The mechanical properties of Mg–1.21Li–1.12Ca–1Y alloy were improved by the grain refinement and dispersion strengthening. Corrosion pits initiated at the α-Mg matrix neighboring the Mg2 Ca particles and subsequently the alloy exhibited general corrosion and filiform corrosion as the corrosion product layer of Mg(OH)2and Mg CO3 became compact and thick.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号