首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
全球海洋岩石圈的最大弯曲与大地震发生在俯冲带。当弯曲应力超过岩石承受范围,就会产生正断层和地震,海水沿着正断层进入上地幔并发生蛇纹石化,引发浅源地震并可能造成灾难性海啸。选取西太平洋最具代表性的日本、伊豆-小笠原、马里亚纳和雅浦俯冲带以及汤加-克马德克俯冲带,归纳近些年的地球物理观测及地球动力学模拟的结果,对比分析了不同俯冲带挠曲正断层的分布特征,并探讨了俯冲板块变形与地震之间的相关性,以揭示俯冲板片弯曲变形及相应的正断层与潜在板块水化特征。  相似文献   

2.
A major earthquake occurrence zone means a place where M≥6 events have occurred since the Holocene and similar shocks may happen again in the future. The dynamic context of the major earthquake occurrence zones in China is primarily associated with the NNE-directed push of the India plate,next with the westward subduction of the Pacific plate. The Chinese mainland is a grand mosaic structure of many crust blocks bounded by faults and sutures. When it is suffered from boundary stresses,deformation takes place along these faults or sutures while the block interiors remain relatively stable or intact. Since the Quaternary,for example,left slip on the Xianshuihe-Xiaojiang fault zone in southwestern China has produced a number of fault-depression basins in extensional areas during periods Q1 and Q2. In the Q3,the change of stress orientation and enhancement of tectonic movement made faults of varied trends link each other,and continued to be active till present day,producing active fault zones in this region. Usually major earthquakes occur at some special locations on these active fault zones. During these events,in the epicenter areas experience intensive deformation characterized by large-amplitude rise and fall of neighboring sections,generation of horst-graben systems and dammed rivers. The studies on palaeoearthquakes suggest that major shocks of close magnitudes often repeated for several times at a same place. By comparison of the Chi-Chi,Taiwan event in 1999 and Yuza,Yunnan event in 1955,including contours of accelerations and intensities,destruction of buildings,and in contrast to the Xigeda formation in southwestern China,a sandwich model is established to account for the mechanism of deformation caused by major earthquakes. This model consists of three layers,i. e. the two walls of a fault and the ruptured zone intercalated between them. This ruptured zone is just the loci where stress is built up and released,and serves as a channel for seismic waves.  相似文献   

3.
Fialko Y  Sandwell D  Simons M  Rosen P 《Nature》2005,435(7040):295-299
Our understanding of the earthquake process requires detailed insights into how the tectonic stresses are accumulated and released on seismogenic faults. We derive the full vector displacement field due to the Bam, Iran, earthquake of moment magnitude 6.5 using radar data from the Envisat satellite of the European Space Agency. Analysis of surface deformation indicates that most of the seismic moment release along the 20-km-long strike-slip rupture occurred at a shallow depth of 4-5 km, yet the rupture did not break the surface. The Bam event may therefore represent an end-member case of the 'shallow slip deficit' model, which postulates that coseismic slip in the uppermost crust is systematically less than that at seismogenic depths (4-10 km). The InSAR-derived surface displacement data from the Bam and other large shallow earthquakes suggest that the uppermost section of the seismogenic crust around young and developing faults may undergo a distributed failure in the interseismic period, thereby accumulating little elastic strain.  相似文献   

4.
 “一带一路”地区面积辽阔,活动构造分布广泛,大地震频繁发生。介绍了“一带一路”地区的潜在震源区划分模型、地震活动性模型、地震动衰减关系模型和场地调整方法,在“一带一路”地区开展了概率地震危险性计算,给出了全区50年超越概率10%的峰值加速度(PGA)分布的地震区划图,并提出不同地震危险性地区防震减灾对策建议。研究表明,东亚和东南亚西部、太平洋西岸、中亚南部、西亚东部、欧洲南部和非洲东部是“一带一路”地区地震危险性较高的地区,在50年超越概率10%的PGA>0.4的地区,一般民用建筑应采取地震烈度九度设防。  相似文献   

5.
采用2000年日本鸟取MJMA7.3级地震的907个余震及其地方震的24 756个P波和22 547个S波到时,确定鸟取地震震源区的P波、S波和泊松比的三维结构.在震源区地震波速变化幅度达4%,泊松比变化幅度达9%.在11 km深度发现高波速和低泊松比异常,表明这一部位为刚性的粗糙断层面,形成断裂带的锁定结构,它的破裂产生鸟取地震的主震.低波速和高泊松比异常在震源区之下的地壳中出现,这与菲律宾板块俯冲带的脱水过程和岩浆活动有关,导致Daisen弧后火山的形成.流体运动和岩浆活动,对鸟取地震的成核和破裂过程有重大的影响.  相似文献   

6.
Ozawa S  Nishimura T  Suito H  Kobayashi T  Tobita M  Imakiire T 《Nature》2011,475(7356):373-376
Most large earthquakes occur along an oceanic trench, where an oceanic plate subducts beneath a continental plate. Massive earthquakes with a moment magnitude, M(w), of nine have been known to occur in only a few areas, including Chile, Alaska, Kamchatka and Sumatra. No historical records exist of a M(w) = 9 earthquake along the Japan trench, where the Pacific plate subducts beneath the Okhotsk plate, with the possible exception of the ad 869 Jogan earthquake, the magnitude of which has not been well constrained. However, the strain accumulation rate estimated there from recent geodetic observations is much higher than the average strain rate released in previous interplate earthquakes. This finding raises the question of how such areas release the accumulated strain. A megathrust earthquake with M(w) = 9.0 (hereafter referred to as the Tohoku-Oki earthquake) occurred on 11 March 2011, rupturing the plate boundary off the Pacific coast of northeastern Japan. Here we report the distributions of the coseismic slip and postseismic slip as determined from ground displacement detected using a network based on the Global Positioning System. The coseismic slip area extends approximately 400?km along the Japan trench, matching the area of the pre-seismic locked zone. The afterslip has begun to overlap the coseismic slip area and extends into the surrounding region. In particular, the afterslip area reached a depth of approximately 100?km, with M(w) = 8.3, on 25 March 2011. Because the Tohoku-Oki earthquake released the strain accumulated for several hundred years, the paradox of the strain budget imbalance may be partly resolved. This earthquake reminds us of the potential for M(w)?≈?9 earthquakes to occur along other trench systems, even if no past evidence of such events exists. Therefore, it is imperative that strain accumulation be monitored using a space geodetic technique to assess earthquake potential.  相似文献   

7.
Di Toro G  Goldsby DL  Tullis TE 《Nature》2004,427(6973):436-439
An important unsolved problem in earthquake mechanics is to determine the resistance to slip on faults in the Earth's crust during earthquakes. Knowledge of coseismic slip resistance is critical for understanding the magnitude of shear-stress reduction and hence the near-fault acceleration that can occur during earthquakes, which affects the amount of damage that earthquakes are capable of causing. In particular, a long-unresolved problem is the apparently low strength of major faults, which may be caused by low coseismic frictional resistance. The frictional properties of rocks at slip velocities up to 3 mm s(-1) and for slip displacements characteristic of large earthquakes have been recently simulated under laboratory conditions. Here we report data on quartz rocks that indicate an extraordinary progressive decrease in frictional resistance with increasing slip velocity above 1 mm s(-1). This reduction extrapolates to zero friction at seismic slip rates of approximately 1 m s(-1), and appears to be due to the formation of a thin layer of silica gel on the fault surface: it may explain the low strength of major faults during earthquakes.  相似文献   

8.
 大地震不是任何地方都能发生的,大地震也不是任何时间都能发生的,大地震有其特定的时空结构。前期工作表明,条环交会、差异活动以及深震与“天外来客”事件等是制约发震时空窗口的主要因素。2011年3月11日发生在日本海沟俯冲带的M9.0大地震,其震前地震活动全面、清晰地展现出了其可预测性特征:(1) 1925年开始出现的板间地震长期平静区;(2) 2003年开始出现的位于平静区中部,起始于深震的海沟垂向地震活动条带;(3) 2009年3月(海沟垂向地震活动条带形成后)开始出现的广义前震发震地方时的非随机显著聚集特征;(4) 2011年3月9日(主震前2天)发生在平静区内的前震。主震发生在平静区边缘,海沟垂向地震活动条带与日本海沟板间地震带的交会处的地震活动差异性较大的地方,其断层面与海沟垂向地震活动条带内另外两个板间地震(2005-08-16地震和前震)的断层面共面。主震发生于广义前震发震地方时非随机聚集时段的中位时辰。日本大地震的可预测性特征逐一印证了我们的前期研究。  相似文献   

9.
中国陆域近10年地震时空分布统计特征   总被引:1,自引:0,他引:1  
对中国陆域近10年4级以上地震震中的空间分布和季节分布特征进行了统计分析,从1994年1月到2005年2月间的4级以上地震,共计966次。近10年的地震空间分布与中国陆域历史地震分布基本吻合。中国陆域地震活动与印度板块、太平洋板块及欧亚板块间的相互作用有关,与前者相关的地震位于青藏高原及其外围地区;与后者密切的地震活动集中在中国陆域南海,尤其是台湾省。同时地震活动多围绕断块的周围分布。地震震中较集中地分布在活动断裂带附近、断裂带密集分布地带以及大构造区域的边界地带。地震年际活动的季节统计分析表明,地震高峰期集中出现在春季和秋季,各年地震活动波动性最大,地震距平曲线与地球自转速度变化曲线协同,地球自转速度的季节性变化是影响地震活动的基本因素之一。  相似文献   

10.
Smalley R  Ellis MA  Paul J  Van Arsdale RB 《Nature》2005,435(7045):1088-1090
In the winter of 1811-1812, near the town of New Madrid in the central United States and more than 2,000 km from the nearest plate boundary, three earthquakes within three months shook the entire eastern half of the country and liquefied the ground over distances far greater than any historic earthquake in North America. The origin and modern significance of these earthquakes, however, is highly contentious. Geological evidence demonstrates that liquefaction due to strong ground shaking, similar in scale to that generated by the New Madrid earthquakes, has occurred at least three and possibly four times in the past 2,000 years (refs 4-6), consistent with recurrence statistics derived from regional seismicity. Here we show direct evidence for rapid strain rates in the area determined from a continuously operated global positioning system (GPS) network. Rates of strain are of the order of 10(-7) per year, comparable in magnitude to those across active plate boundaries, and are consistent with known active faults within the region. These results have significant implications for the definition of seismic hazard and for processes that drive intraplate seismicity.  相似文献   

11.
McGuire JJ  Boettcher MS  Jordan TH 《Nature》2005,434(7032):457-461
East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominantly aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion.  相似文献   

12.
2017年8月8日四川九寨沟发生的Ms 7.0级地震是继2008年汶川Ms 8.0地震、2013年芦山Ms 7.0级地震后在青藏高原东缘发生的又一次强震。本文通过综合分析九寨沟Ms 7.0级地震及历史地震的震源机制解、余震和历史地震分布、区域应力场、活动断层等资料,来揭示九寨沟地震的发震构造与动力机制。初步研究结果表明:(1)此次地震的震中位于塔藏断裂、岷江断裂和虎牙断裂之间的交汇区,显示活动断裂的交汇区对此次地震的发生具有控制作用;(2)发震断裂为虎牙断裂,断裂走向为北西西向,倾向南西,倾角较陡,属于高倾角左旋走滑型地震;(3)震中位于虎牙断裂北段的北部地震空区,充填了1973年和1976年4次大于Mw6.0级地震空区;(4)此次地震位于2008年汶川Ms 8.0级地震的库仑应力增加区,应是汶川地震的应力传递和触发的结果;(5)此次地震位于巴颜喀拉块体的东北部顶角区,青藏高原东缘下地壳流向北东方向的挤出是驱动此次地震的动力机制。  相似文献   

13.
Seismic images of the mantle beneath the active Changbai intraplate volcano in Northeast China determined by teleseismic travel time tomography are presented. The data are measured at a new seismic network consisting of 19 portable stations and 3 permanent stations. The results show a columnar low-velocity (-3%) anomaly extending to 400 km depth under the Changbai volcano. High velocity anomalies are visible in the mantle transition zone, and deep earthquakes occur at depths of 500--600 km under the region,suggesting that the subducting Pacific slab is stagnant in the transition zone, as imaged clearly also by global tomography.These results suggest that the Changbai intraplate volcano is not a hotspot like Hawaii but a kind of back-arc volcano related to the upwelling of hot asthenospheric materials associated with the deep subduction and stagnancy of the Pacific slab under northeast Asia.  相似文献   

14.
Parsons T  Ji C  Kirby E 《Nature》2008,454(7203):509-510
On 12 May 2008, the devastating magnitude 7.9 (Wenchuan) earthquake struck the eastern edge of the Tibetan plateau, collapsing buildings and killing thousands in major cities aligned along the western Sichuan basin in China. After such a large-magnitude earthquake, rearrangement of stresses in the crust commonly leads to subsequent damaging earthquakes. The mainshock of the 12 May earthquake ruptured with as much as 9 m of slip along the boundary between the Longmen Shan and Sichuan basin, and demonstrated the complex strike-slip and thrust motion that characterizes the region. The Sichuan basin and surroundings are also crossed by other active strike-slip and thrust faults. Here we present calculations of the coseismic stress changes that resulted from the 12 May event using models of those faults, and show that many indicate significant stress increases. Rapid mapping of such stress changes can help to locate fault sections with relatively higher odds of producing large aftershocks.  相似文献   

15.
Calvert AJ 《Nature》2004,428(6979):163-167
At convergent continental margins, the relative motion between the subducting oceanic plate and the overriding continent is usually accommodated by movement along a single, thin interface known as a megathrust. Great thrust earthquakes occur on the shallow part of this interface where the two plates are locked together. Earthquakes of lower magnitude occur within the underlying oceanic plate, and have been linked to geochemical dehydration reactions caused by the plate's descent. Here I present deep seismic reflection data from the northern Cascadia subduction zone that show that the inter-plate boundary is up to 16 km thick and comprises two megathrust shear zones that bound a >5-km-thick, approximately 110-km-wide region of imbricated crustal rocks. Earthquakes within the subducting plate occur predominantly in two geographic bands where the dip of the plate is inferred to increase as it is forced around the edges of the imbricated inter-plate boundary zone. This implies that seismicity in the subducting slab is controlled primarily by deformation in the upper part of the plate. Slip on the shallower megathrust shear zone, which may occur by aseismic slow slip, will transport crustal rocks into the upper mantle above the subducting oceanic plate and may, in part, provide an explanation for the unusually low seismic wave speeds that are observed there.  相似文献   

16.
Cummins PR 《Nature》2007,449(7158):75-78
The great Sumatra-Andaman earthquake and Indian Ocean tsunami of 2004 came as a surprise to most of the earth science community. Although it is now widely recognized that the risk of another giant earthquake is high off central Sumatra, just east of the 2004 earthquake, there seems to be relatively little concern about the subduction zone to the north, in the northern Bay of Bengal along the coast of Myanmar. Here I show that similar indicators suggest a high potential for giant earthquakes along the coast of Myanmar. These indicators include the tectonic environment, which is similar to other subduction zones that experience giant megathrust earthquakes, stress and crustal strain observations, which indicate that the seismogenic zone is locked, and historical earthquake activity, which indicates that giant tsunamigenic earthquakes have occurred there in the past. These are all consistent with active subduction in the Myanmar subduction zone and I suggest that the seismogenic zone extends beneath the Bengal Fan. I conclude therefore that giant earthquakes probably occur off the coast of Myanmar, and that a large and vulnerable population is thereby exposed to a significant earthquake and tsunami hazard.  相似文献   

17.
Kao H  Shan SJ  Dragert H  Rogers G  Cassidy JF  Ramachandran K 《Nature》2005,436(7052):841-844
The Cascadia subduction zone is thought to be capable of generating major earthquakes with moment magnitude as large as M(w) = 9 at an interval of several hundred years. The seismogenic portion of the plate interface is mostly offshore and is currently locked, as inferred from geodetic data. However, episodic surface displacements-in the direction opposite to the long-term deformation motions caused by relative plate convergence across a locked interface-are observed about every 14 months with an unusual tremor-like seismic signature. Here we show that these tremors are distributed over a depth range exceeding 40 km within a limited horizontal band. Many occurred within or close to the strong seismic reflectors above the plate interface where local earthquakes are absent, suggesting that the seismogenic process for tremors is fluid-related. The observed depth range implies that tremors could be associated with the variation of stress field induced by a transient slip along the deeper portion of the Cascadia interface or, alternatively, that episodic slip is more diffuse than originally suggested.  相似文献   

18.
A scaling law for slow earthquakes   总被引:2,自引:0,他引:2  
Ide S  Beroza GC  Shelly DR  Uchide T 《Nature》2007,447(7140):76-79
Recently, a series of unusual earthquake phenomena have been discovered, including deep episodic tremor, low-frequency earthquakes, very-low-frequency earthquakes, slow slip events and silent earthquakes. Each of these has been demonstrated to arise from shear slip, just as do regular earthquakes, but with longer characteristic durations and radiating much less seismic energy. Here we show that these slow events follow a simple, unified scaling relationship that clearly differentiates their behaviour from that of regular earthquakes. We find that their seismic moment is proportional to the characteristic duration and their moment rate function is constant, with a spectral high-frequency decay of f(-1). This scaling and spectral behaviour demonstrates that they can be thought of as different manifestations of the same phenomena and that they comprise a new earthquake category. The observed scale dependence of rupture velocity for these events can be explained by either a constant low-stress drop model or a diffusional constant-slip model. This new scaling law unifies a diverse class of slow seismic events and may lead to a better understanding of the plate subduction process and large earthquake generation.  相似文献   

19.
 2007年全国布设了由40台4分量钻孔应变仪组成的分量应变监测网络。位于四川姑咱地震台的应变仪先后记录了汶川和芦山强震孕震过程中的潮汐畸变应变异常现象。这些异常变化基本满足地震前兆的3项判据,故被初步认证是这两次强震孕育过程中的应变前兆。本研究对相关记录资料进行了分析,以期为后续强震预测和预报研究提供参考。  相似文献   

20.
Study on seismogenesis of the 1997 Jiashi earthquake swarm, western China   总被引:3,自引:0,他引:3  
The 1997 Jiashi swarm earthquakes are relocated using the master event method improved by the authors. From the relocated hypocenters and focal mechanisms of the earthquakes, it is inferred that a pair of echelon faults, striking in northern north-west direction, right-step allocated and right-laterally moved, may exist in the earthquake swarm region. The composite focal mechanism obtained by analyzing the data of 2177 P-wave first motion polarities indicates that both mean P- and T-axis are horizontal, orienting in N19°E and N110°E respectively, and the mean B-axis is nearly vertical. The co-seismic deformation caused by this earthquake swarm is compressive nearly in North-South and extensional nearly in East-West. Obviously low earthquake stress drops are found via analyzing the source spectra of the swarm earthquakes, which may be one of the main reasons why the Jiashi earthquake swarm has lasted for a long period of time. The interaction between discontinuous segments of the echelon fault has been discussed. The result indicates that the stress drop is usually low for the earthquakes occurring on the right step echelon faults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号