首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 453 毫秒
1.
Seismic tomography of the northwest Pacific and its geodynamic implications   总被引:4,自引:0,他引:4  
High-resolution tomographic images across Japan Trenh-Changhai Mountains-lDong Ujimqinqi are displayed, showing the morphological feature of the subducted slab in the norhwestem Pacific margin and the eharaeter istics of lithosphere stmctures under the Changhai Mountains and the Da Hinggan Mnuntains. The Pacific plate began to penetrate into the deeper mantle after it subducted to the 660 km discontinuity with an underthmsting angle of 26°, but did not continue to mnve furrther westward. In contrast, there appeared a remarkable thermal upwelling zone to the west of the downward plate. In addition, the evidence frnm the subduction time and time lag between the subduetion and eon sequent magmatism indicates that there is no direct genetic correlatiom between the Mesoznic magmatism in eastern China ami subduction of the Pacific plate. In this work. we also emphasize that what the tomographic images reflect is the pre sent structure in the deep earth interior, which should preserve some Mesozoic lithospheric structure characteristics. In summary, we attribute the Mesozoic intense magmatic evolution in north China to the intraplate asthenosphere upwelling zone.  相似文献   

2.
Seismic tomography of the Moon   总被引:1,自引:0,他引:1  
We attempted to determine the first three-dimensional P and S wave velocity and Poisson's ratio structures of the lunar crust and mantle down to 1000 km depth under the near-side of the Moon by applying seismic tomography to the moonquake arrival-time data recorded by the Apollo seismic network operated during 1969 to 1977. Our results show that significant lateral heterogeneities may exist in the lunar interior. Because there is no plate tectonics in the Moon, the lateral heterogeneities may be produced at the early stage of the Moon formation and evolution, and they have been preserved till today. There seems to be a correlation between the distribution of deep moonquakes and lateral velocity variations in the lunar lower mantle, suggesting that the occurrence of deep moonquakes may be affected by the lunar structural heterogeneity in addition to the tidal stresses. Although this is an experimental work and the result is still preliminary, it indicates that tomographic imaging of the lunar interior is feasible.  相似文献   

3.
The low-velocity layer at the depth of 620 km beneath Northeast China   总被引:2,自引:0,他引:2  
Based on the 3-D Earth model, the common convert points-phase weighted stacks (CCP-PWS) migration method is used to image the upper mantle discontinuities beneath Northeast China (longitude 120°―132°; latitude 38°―40°) with 802 observed receiver functions. Teleseismic records are obtained from 4 stations belonging to CCDSN and 19 stations belonging to PASSCAL. A low-velocity layer has been detected at the depth of 620 km. This low-velocity layer rises to 600 km in the east of the study region close to the subducted slab. We consider that this low-velocity layer might be the accumulated oceanic crustal material delaminated from the western Pacific subducted slab. Additionally, we detect the obvious depression of 660 km discontinuity which was attributed to the interaction between the upper mantle and subducted slab. The maximum depth of 660 km discontinuity approaches 700 km, and 660 km discontinuity splits into multiple discontinuities in the northeast of the study region.  相似文献   

4.
Holocene volcanic rocks in Jingbo Lake region ? Diversity of magmatism   总被引:2,自引:0,他引:2  
During the time from 5500 a to 5200 a BP more than 10 Holocene volcanoes in Jingbo Lake region erupted and the volcanic rocks covered an area of about 500 km2. Holocene volcanic rocks in Jingbo Lake region belong to the potassium?rich rocks and contain three rock types: trachybasalts, basanites and phonotephrites. Various types of magmatism formed in a small area and in a short period of time came from partial melting of potassically?metasomatised lithospheric mantle. The diversity of magmatism can be explained by that Jingbo Lake is situated in the back?arc extensional region of East Asian continent subducted by the Pacific Ocean, and potassic fluid derived from mantle wedge or dehydration of subducted slab can result in a high heterogeneity of the mantle beneath this region. Based on the pressure estimation of clinopyroxene megacrysts, we estimate that phonotephrite magma fractionally crystallize at ca. 52?54 km down the earth.  相似文献   

5.
Deep structure at northern margin of Tarim Basin   总被引:5,自引:0,他引:5  
Zhao  JunMeng  Cheng  HongGang  Pei  ShunPing  Liu  HongBing  Zhang  JianShi  Liu  BaoFeng 《科学通报(英文版)》2008,53(10):1544-1554
In this paper, a 2D velocity structure of the crust and the upper mantle of the northern margin of the Tarim Basin (TB) has been obtained by ray tracing and theoretical seismogram calculation under the condition of 2D lateral inhomogeneous medium using the data of seismic wide angle reflection/refraction profile from Baicheng to Da Qaidam crossing the Kuqa Depression (KD) and Tabei Uplift (TU). And along the Baicheng to Da Qaidam profile, 4 of the 10 shot points are located in the northern margin of the TB. The results show that the character of the crust is uniform on the whole between the KD and TU, but the depth of the layers, thickness of the crust and the velocity obviously vary along the profile. Thereinto, the variation of the crust thickness mainly occurs in the middle and lower crust. The Moho has an uplifting trend near the Baicheng shot point in KD and Luntai shot point in TU, and the thickness of the crust reduces to 42 km and 47 km in these two areas, respectively. The transition zone between the KD and TU has a thickest crust, up to 52 km. In this transition zone, there are high velocity anoma- lies in the upper crust, and low velocity anomalies in the lower crust, these velocity anomalies zone is near vertical, and the sediment above them is thicker than the other areas. According to the velocity distributions, the profile can be divided into three sections: KD, TU and transition zone between them. Each section has a special velocity structural feature, the form of the crystalline basement and the relationship between the deep structure and the shallow one. The differences of velocity and tectonic between eastern and western profile in the northern margin of the Tarim Basin (NMTB) may suggest different speed and intensity of the subduction from the Tarim basin to the Tianshan orogenic belt (TOB).  相似文献   

6.
A portable 3-component broadband digital seismic array was deployed across the Tianshan orogenic belt (TOB) to investigate the lithospheric structure. Based on receiver function analysis of the teleseismic P-wave data, a 2-D S-wave velocity profile of the boundary area of the TOB and the Tarim Basin was obtained at the depths of 0--80 km.Our results reveal a vertical and lateral inhomogeneity in the crust and uppermost mantle. Four velocity interfaces divide the crystalline crust into the upper, middle and lower crust. A low velocity zone is widely observed in the upper-middle crust. The depth of Moho varies between 42 and 52 km. At the north end of the profile the Moho dips northward with a vertical offset of 4--6 km, which implies a subduction front of the Tarim Basin into the TOB. The Moho generally appears as a velocity transitional zone except beneath two stations in the northern Tarim Basin, where the Moho is characterized by a typical velocity discontinuity. The fine velocity structure and the deep contact deformation of the crust and upper most mantle delineate the north-south lithospheric shortening and thickening in the boundary area of the TOB and the Tarim Basin, which would be helpful to constructing the geodynamical model of the intracontinental mountain-basin-coupling system.  相似文献   

7.
Wang  QinCai  Chen  ZhangLi  Zheng  SiHua 《科学通报(英文版)》2009,54(13):2263-2270
Moment tensor solutions of 88 earthquakes were determined by using the broadband waveform data recorded in six stations within 450 km around the Wenchuan Earthquake sequence by means of the time domain moment tensor inversion method. It was found that the type of the focal mechanism solution is characteristic of obvious spatial segmentation. There are six segments along the main rupture zone from southwest to northeast, where initially the focal mechanism is of main thrust type, finally of main right-lateral strike-slip type and between these two areas there is a transition zone characterized in multiple types of focal mechanisms appearing in turn. Earthquakes of left-lateral strike-slip type perpendicular to the main rupture zone occurred near Xiaoyudong Town. The stress field of each segment is inversed by means of the FMSI program, and it was found that, along the main rupture zone from southwest to northeast, the direction of the maximum principal stress is gradually changing from near EW to NW-SE, and finally changing back to near EW.  相似文献   

8.
Based on co-seismic displacements recorded by terrestrial GPS stations and seafloor GPS/acoustic stations, the static slip model of the 2011 Mw 9.0 Tohoku earthquake was determined by inverting the data using a layered earth model. According to a priori information, the rupture surface was modeled with a geometry that is close to the actual rupture, in which the fault dip angle increases with depth and the fault strike varies with the trend of the trench. As shown by the results inferred from the joint inversion, the "geodetic" moment is 3.68 × 10 22 Nm, corresponding to Mw 9.01, and the maximum slip is positioned at a depth of 13.5 km with a slip magnitude of 45.8 m. Rupture asperities with slip exceeding 10 m are mainly distributed from 39.6 to 36.97°N, over a length of almost 240 km along the trench. The slip was mostly concentrated at depths shallower than 40 km, up-dip of the hypocenter. "Checkerboard" tests reveal that a joint inversion of multiple datasets can resolve the slip distribution better than an inversion with terrestrial GPS data only-especially when aiming to resolve slip at shallow depths. Thus, the joint inversion results obtained by this work may provide a more reliable slip model than the results of other studies that are only derived from terrestrial GPS data or seismic waveform data.  相似文献   

9.
We have made a new investigation on the vertical profiles of tritium and helium isotopes in Lakes Van and Nemrut(Eastern Turkey),using experimental data from the reference by Kipfer et al.for study of long-term vertical mixing and deep water renewal in Lake Van.Lakes Van and Nemrut are crater lakes.Lake Nemrut is at the western border of Lake Van.The 3He and 4He are injected at the bottom of Lakes Van and Nemrut,and the both helium isotopes are confirmed from the mantle source.From 3H(tritium) data in Lakes Van and Nemrut,we have observed "3H anomaly" at the vertical profile of 3H concentrations in Lake Nemrut.The 3H concentration at the lake bottom is 10% higher than at the surface.The difference of 3H concentrations between surface and bottom is about 3.7±1.2 TU.This excess 3H should be injected from the lake bottom.An investigation on the origin of the injected tritium has been made.The results show the conventional origins are excluded,such as residence of precipitation tritium from nuclear testing in the early 1950s-1960s and tritium from known nuclear reactions.Based on the correlation of excess 3H with 3He and heat flow in Lake Nemrut,we infer that the 3He and 3H might be all from the mantle source,and produced by the supposed natural-nuclear-fusion,which might occur in an environment rich in water(H) and(U Th) at high temperature and high pressure in the deep Earth.Detection of tritium in the Earth's interior is a key evidence for exploration of natural nuclear fusion in the deep Earth.Based on the published data,we have found that the excess 3He and 3H injected at the bottom of Lake Laacher(Germany) were also released from the mantle source.The present work will be helpful to the further study of mechanism of natural nuclear fusion in the Earth's interior.  相似文献   

10.
Two metamorphic processes, i.e. subsolidus dehydration and partial melting occurring in MORB, metasediments and peridotite of subducted oceanic lithosphere are discussed on the basis of available experimental work and phase equilibrium modeling. Phase diagrams of hydrous MORB show that in most cold subduction P-T (pressure-temperature) regimes a large portion of water in the basic layer has released below the onset of blueschist facies (〈 20 km), and at a depth (60--70 km) of transition from lawsonite blueschist to lawsonite eclogite facies through glaucophane dehydration; only a smaller portion of water will escape from the slab through dehydration of lawsonite and chloritoid in the depth range suitable for arc magma formation; and a very small portion of water stored in lawsonite and phengite will fade into the deeper mantle. The role of amphibole for arc magma formation is still arguable. In cold subduction P-Tregimes, the dehydration of chlorite and talc in AI-poor metasediments, and chloritoid and carpholite in AI-rich metapelites at a depth around 80--100 km will make some con- tributions to the formation of arc magma. Comparatively, dehydration of serpentine in hydrated peri- dotite occurs at depths of 120--180 km, playing an important role in the arc magmatism. Subduction of oceanic crust along warm P-T regimes will cross the solidi at a depth over 80 km, resulting in partial melting under fluid-saturated and fluid-absent conditions in the metasediments involving biotite and phengite, and in the basic rocks involving epidote and amphibole. The melt compositions of the basic crust are adakitic at pressures 〈 3.0 GPa, but become peraluminous granitic at higher pressures.  相似文献   

11.
太平洋板块边界和内部均发育大量火山,是研究地球火山的天然实验场。综述了太平洋火山特征与深部成因机制,表明研究人员对地球不同环境下的火山(包括大洋中脊、俯冲带岛弧、板内地幔柱等)进行了系统性研究,分别构建了减压熔融、俯冲板片脱水与富水地幔楔熔融、地幔柱高温熔融的经典模式。但目前学界对于板内非地幔柱型火山的深部岩浆起源以及浅部喷发通道等重要科学问题仍缺乏清晰的认识。未来需要采用创新观测手段,开展多学科交叉研究以取得突破。  相似文献   

12.
Huang X  Xu Y  Karato S 《Nature》2005,434(7034):746-749
The distribution of water in the Earth's interior reflects the way in which the Earth has evolved, and has an important influence on its material properties. Minerals in the transition zone of the Earth's mantle (from approximately 410 to approximately 660 km depth) have large water solubility, and hence it is thought that the transition zone might act as a water reservoir. When the water content of the transition zone exceeds a critical value, upwelling flow might result in partial melting at approximately 410 km, which would affect the distribution of certain elements in the Earth. However, the amount of water in the transition zone has remained unknown. Here we determined the effects of water and temperature on the electrical conductivity of the minerals wadsleyite and ringwoodite to infer the water content of the transition zone. We find that the electrical conductivity of these minerals depends strongly on water content but only weakly on temperature. By comparing these results with geophysically inferred conductivity, we infer that the water content in the mantle transition zone varies regionally, but that its value in the Pacific is estimated to be approximately 0.1-0.2 wt%. These values significantly exceed the estimated critical water content in the upper mantle, suggesting that partial melting may indeed occur at approximately 410 km depth, at least in this region.  相似文献   

13.
Mapping the Hawaiian plume conduit with converted seismic waves   总被引:4,自引:0,他引:4  
Li X  Kind R  Priestley K  Sobolev SV  Tilmann F  Yuan X  Weber M 《Nature》2000,405(6789):938-941
The volcanic edifice of the Hawaiian islands and seamounts, as well as the surrounding area of shallow sea floor known as the Hawaiian swell, are believed to result from the passage of the oceanic lithosphere over a mantle hotspot. Although geochemical and gravity observations indicate the existence of a mantle thermal plume beneath Hawaii, no direct seismic evidence for such a plume in the upper mantle has yet been found. Here we present an analysis of compressional-to-shear (P-to-S) converted seismic phases, recorded on seismograph stations on the Hawaiian islands, that indicate a zone of very low shear-wave velocity (< 4 km s(-1)) starting at 130-140 km depth beneath the central part of the island of Hawaii and extending deeper into the upper mantle. We also find that the upper-mantle transition zone (410-660 km depth) appears to be thinned by up to 40-50 km to the south-southwest of the island of Hawaii. We interpret these observations as localized effects of the Hawaiian plume conduit in the asthenosphere and mantle transition zone with excess temperature of approximately 300 degrees C. Large variations in the transition-zone thickness suggest a lower-mantle origin of the Hawaiian plume similar to the Iceland plume, but our results indicate a 100 degrees C higher temperature for the Hawaiian plume.  相似文献   

14.
Shiraishi R  Ohtani E  Kanagawa K  Shimojuku A  Zhao D 《Nature》2008,455(7213):657-660
The mineral akimotoite, ilmenite-structured MgSiO(3), exists at the bottom of the Earth's mantle transition zone and within the uppermost lower mantle, especially under low-temperature conditions. Akimotoite is thought to be a major constituent of the harzburgite layer of subducting slabs, and the most anisotropic mineral in the mantle transition zone. It has been predicted that if akimotoite crystals are preferentially oriented by plastic deformation, a cold subducted slab would be extremely anisotropic. However, there have been no studies of crystallographic preferred orientations and very few reports of plastic deformation experiments for MgSiO(3) ilmenite. Here we present plastic deformation experiments on polycrystalline akimotoite, which were conducted at confining pressures of 20-22 GPa and temperatures of 1,000-1,300 degrees C. We found a change in crystallographic preferred orientation pattern of akimotoite with temperature, where the c-axis maximum parallel to the compression direction develops at high temperature, whereas the c axes are preferentially oriented parallel to the shear direction or perpendicular to the compression direction at lower temperature. The previously reported difference in compressional-wave seismic anisotropy between the northern and southern segments of the Tonga slab at depths of the mantle transition zone can conceivably be attributed to the difference in the crystallographic preferred orientation pattern of akimotoite at varying temperature within the slab.  相似文献   

15.
Hirschmann M 《Nature》2006,439(7075):E3; discussion E3-E3; discussion E4
The suggestion that the transition zone of Earth's mantle (410-670 km in depth) is enriched in water is of great possible significance to the geodynamics and geochemistry of Earth's interior, as well as for the role of the mantle in the global water cycle. Huang et al. compare the effect of water on electrical conductivities of transition-zone phases to electromagnetic and magnetotelluric soundings of the mantle beneath the North Pacific and conclude that the transition zone contains between 1,000 and 2,000 p.p.m. of water, which is considerably more than the 50-200 p.p.m. present in the upper mantle. This conclusion is predicated on the assumption that the transition zone is relatively oxidized, but in fact fairly reduced conditions are more likely. Here I show that if the transition zone is reduced, high conductivities can be explained without the requirement for large enrichments of water.  相似文献   

16.
Seismic evidence for catastrophic slab loss beneath Kamchatka   总被引:5,自引:0,他引:5  
Levin V  Shapiro N  Park J  Ritzwoller M 《Nature》2002,418(6899):763-767
In the northwest Pacific Ocean, a sharp corner in the boundary between the Pacific plate and the North American plate joins a subduction zone running along the southern half of the Kamchatka peninsula with a region of transcurrent motion along the western Aleutian arc. Here we present images of the seismic structure beneath the Aleutian-Kamchatka junction and the surrounding region, indicating that: the subducting Pacific lithosphere terminates at the Aleutian-Kamchatka junction; no relict slab underlies the extinct northern Kamchatka volcanic arc; and the upper mantle beneath northern Kamchatka has unusually slow shear wavespeeds. From the tectonic and volcanic evolution of Kamchatka over the past 10 Myr (refs 3-5) we infer that at least two episodes of catastrophic slab loss have occurred. About 5 to 10 Myr ago, catastrophic slab loss shut down island-arc volcanic activity north of the Aleutian-Kamchatka junction. A later episode of slab loss, since about 2 Myr ago, seems to be related to the activity of the world's most productive island-arc volcano, Klyuchevskoy. Removal of lithospheric mantle is commonly discussed in the context of a continental collision, but our findings imply that episodes of slab detachment and loss are also important agents in the evolution of oceanic convergent margins.  相似文献   

17.
When continents break apart, the rifting is sometimes accompanied by the production of large volumes of molten rock. The total melt volume, however, is uncertain, because only part of it has erupted at the surface. Furthermore, the cause of the magmatism is still disputed-specifically, whether or not it is due to increased mantle temperatures. We recorded deep-penetration normal-incidence and wide-angle seismic profiles across the Faroe and Hatton Bank volcanic margins in the northeast Atlantic. Here we show that near the Faroe Islands, for every 1 km along strike, 360-400 km(3) of basalt is extruded, while 540-600 km(3) is intruded into the continent-ocean transition. We find that lower-crustal intrusions are focused mainly into a narrow zone approximately 50 km wide on the transition, although extruded basalts flow more than 100 km from the rift. Seismic profiles show that the melt is intruded into the lower crust as sills, which cross-cut the continental fabric, rather than as an 'underplate' of 100 per cent melt, as has often been assumed. Evidence from the measured seismic velocities and from igneous thicknesses are consistent with the dominant control on melt production being increased mantle temperatures, with no requirement for either significant active small-scale mantle convection under the rift or the presence of fertile mantle at the time of continental break-up, as has previously been suggested for the North Atlantic Ocean.  相似文献   

18.
Whole-mantle convection and the transition-zone water filter   总被引:8,自引:0,他引:8  
Bercovici D  Karato S 《Nature》2003,425(6953):39-44
Because of their distinct chemical signatures, ocean-island and mid-ocean-ridge basalts are traditionally inferred to arise from separate, isolated reservoirs in the Earth's mantle. Such mantle reservoir models, however, typically satisfy geochemical constraints, but not geophysical observations. Here we propose an alternative hypothesis that, rather than being divided into isolated reservoirs, the mantle is filtered at the 410-km-deep discontinuity. We propose that, as the ascending ambient mantle (forced up by the downward flux of subducting slabs) rises out of the high-water-solubility transition zone (between the 660 km and 410 km discontinuities) into the low-solubility upper mantle above 410 km, it undergoes dehydration-induced partial melting that filters out incompatible elements. The filtered, dry and depleted solid phase continues to rise to become the source material for mid-ocean-ridge basalts. The wet, enriched melt residue may be denser than the surrounding solid and accordingly trapped at the 410 km boundary until slab entrainment returns it to the deeper mantle. The filter could be suppressed for both mantle plumes (which therefore generate wetter and more enriched ocean-island basalts) as well as the hotter Archaean mantle (thereby allowing for early production of enriched continental crust). We propose that the transition-zone water-filter model can explain many geochemical observations while avoiding the major pitfalls of invoking isolated mantle reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号