首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
设R是带有1的交换环,环R的零因子图Γ(R)是一个简单图,其中图的顶点是R的所有非零的零因子,且顶点x与顶点y有边当且仅当x≠y,且xy=0.文章主要刻画了一类有限交换局部环,使得它们的零因子图是恰有2个中心且带刺的完全图.  相似文献   

2.
讨论了竞赛图的零因子半群.一个半群S的零因子图是一个有向图Γ(S),其顶点是S中非零的零因子,S中两个不同的元x,y有一条有向边x→y当且仅当xy=0.该文证明了如果S是一个没有非零幂零元的有限半群且图Γ(S)的顶点数大于1,那么图Γ(S)不是一个竞赛图.另外对于任意的正整数n,该文完全决定了顶点数为n蹬任一个竞赛图的所有零因子半群.  相似文献   

3.
交换环R的零因子图是一个简单图Γ(R),其顶点集为R的非零零因子集合D(R)*,两个不同的顶点x与y有一条边相连当且仅当xy=0。研究模n高斯整数环Zn[i]的零子图Γ(Zn[i])的直径、平面性和围长等问题,得到了比较完整的结果。  相似文献   

4.
采用上下解方法,证明了拟线性椭圆问题:-△pu=b(x)u^-β(lnu)^2,u〉0,β〉0,2≤p〈N,x∈R^N,lim u|x|→∞(x)=0的正解存在性.这里b(x)∈Cloc^α(α∈(0,1))且b(x)〉0,其中u^-β(lnu)^2)在(0,∞)上没有全区间上的单调性.  相似文献   

5.
交换环的图论性质   总被引:1,自引:0,他引:1  
设R是一个交换环,研究了R的2种图结构.首先,设N表示R的幂零根,,把R的元素作为图的顶点,2个不同的顶点x和y有一边相连接,当且仅当或者,并且x,y中至少1个不是幂零元素,,则证明了下述结果:设R是交换环,使用如上图结构,X(R)<+∞当且仅当|R|<+∞,并且此时x(R)=clique(R).其次,把R的元素看作图的顶点,2个不同顶点x和y有边相连,当且仅当Annx+Anny=R.则证明了对交换诺特环R,X(R)<+∞,并猜测x(R)=clique(R).  相似文献   

6.
Z[i]为高斯整数环,γ为Z[i]中任意非零元,〈γ〉表示由γ生成的理想。定义商环Z[i]/〈γ〉上的立方映射图G(γ),该映射图的顶点为Z[i]/〈γ〉中的所有元素,并且,对于图中的两个顶点α和β,如果β=α3,则从α到β有一条有向边。本文对映射图G(γ)的结构进行了研究,包括G(γ)中不动点的个数,顶点0、1的入度,G(γ)的半正则性,以及任一个零因子顶点在映射图中的高度等。  相似文献   

7.
称半环S是强正则的,如果对任意的x∈S,都存在y∈S使得x=x2y.M2(S)是半环S上的矩阵半环.本文探究了含零元的加法交换半环S上的2×2阶矩阵半环M2(S)的强正则性.借助于矩阵的运算技巧,我们得到,如果加法交换半环〈S,+,·,0,1〉是antiring,则下列条件等价:(1)M2(S)是强正则的;(2)对任意的上三角矩阵A∈M2(S),方程A2X=A是可解的;(3)S是强正则的且〈S,+,·,0,1〉是一个布尔代数;(4)S是一个环且是一个Boolean idempotent orp-semiring.  相似文献   

8.
强自反环     
设R为一个环,如果对任意a,b,c∈R,aRbRc=0蕴涵aRcRb=0,则称R为强自反环.给出强自反环的一些性质,利用强自反环给出对称环的一个刻画.证明了如下结果:①R是symmetric环当且仅当R是强自反环和IFP环;②半素环是强自反环,但反之不成立;③R是强自反环当且仅当对任意a1,a2,…,an∈R(n≥3),a1Ra2Ra3…Ran=0蕴涵ai1Rai2Rai3…Rain=0,其中i1i2i3…in是1,2,3,…,n的任意一种排列;④设R为quasi-Abel环,x∈R为exchange元,则x为clean元.  相似文献   

9.
本文通过引入左α-半交换环推广半交换环的概念。设α是环R的一个非零自同态,称R是一个左α-半交换环,如果对任何a,b∈R,由ab=0可以推出α(a)Rb=0。本文讨论左α-半交换环与相关环的关系,给出左α-半交换环的一些扩张性质,证明了:①环R是α-rigid环当且仅当R是约化的左α-半交换环,且α是单同态;②如果R是约化的左α-半交换环,则R[x]/〈xn〉是左珔α-半交换环,其中〈xn〉是由xn生成的理想,n为任何正整数。  相似文献   

10.
提出左(右)零因子环的概念,它们是一类没有单位元的环.一个环称为左(右)零因子环,如果对于任何a∈R,都有rR(a)≠0(lR(a)≠0).讨论了左(右)零因子环和相关环的关系,给出左零因子环的一些特征刻画.  相似文献   

11.
讨论了一般Von Neumann正则环上的零因子图结构,重点刻画了其连通性和顶点性质.若R是有单位元的正则环,则其零因子图Γ(R)连通当且仅当R是直有限的;若R是无单位元的正则环,则其零因子图Γ(R)连通当且仅当R无真的单边恒等元;若R是满足|R|≥ 5的正则环,则其零因子图Γ(R)的源点和收点可以刻画为Sour(R)={a∈R|a是右可逆的但左不可逆},Sink(R)={a∈R|a是左可逆的但右不可逆}.  相似文献   

12.
交换环R的本质图EG(R)是一个无向简单图,它以Z(R)\{0}为顶点集,两个不同的顶点x、y之间有一条边相连当且仅当ann(xy)是R的一个本质理想.给出了模n剩余类环Zn的零因子图与本质图相等的充分必要条件.在此基础上,证明了交换环的二部本质图必是完全二部图,并对相应的环进行了同构分类.  相似文献   

13.
记A={ai}i=1={(ai,j)j=1}i=1?S+l1,其中,S+l1={x=(x(n))∈l1:‖x‖=1,x(n)≥0,∠n∈N},pA(x)=limi→∞ sup∑j=1ai,j|x(j)|,则limi→∞ Si≡limi→∞supj ai,j=0,当且仅当对任意非空集合B?N,任意0≤β≤pAB),均存在C?B,满足pAC)=β.对B?N,记φA(B)=pAB),证明了φA 的强无原子性当且仅当理想IA={A?N:pAA)=0}的无原子性.  相似文献   

14.
设G,H是阶至少为2的简单图。图G与H的强直积是指这样一个图G□×H,其顶点集合为V(G)×V(H),并且(x1,x2)(y1,y2)∈E(G□×H)当且仅当[x1y1∈E(G)且x2y2∈E(H)]或者[x1=y1且x2y2∈E(H)]或者[x2=y2且x1y1∈E(G)]。一个图G的使用了k种颜色的2-距离染色是指一个从V(G)到{1,2,…,k}的映射f,使得任意两个不同的距离最多是2的顶点染不同的颜色。对图G进行2-距离染色所需的最少的颜色数称为图G的2-距离色数,记为χ2(G)。文中将获得两个图的强直积的2-距离色数的可达到的上界和下界:Δ(G□×H)+1≤χ2(G□×H)≤χ2(G).χ2(H)。对一些特殊图,例如Pm□×Kn,Pm□×Wn,Pm□×Sn,Pm□×Fn,Pm□×Cn(n≡0(mod3)或者n=5),给出了它们的2-距离色数。  相似文献   

15.
证明下面的结论:对任意自然数n≥2,图(K_1∨(P_n∪P_(n+1)))是(n-1)-强优美图.对任意自然数n≥3,图(K_1∨P_n~((1))∪P_n~((2))))∪G是优美图;对任意自然数n≥4,图(K _1∨(P_n~((1))∪P_n~((2))∪P_n~((3)))∪H是优美图,其中k=[n/2].P_n是n个顶点的路,G_i为含有i条边的优美图.给定优美图G_(n-1)和其优美标号f,G_(k-1)和其优美标号g,设u∈G_(n-1),v∈G_(k-1)且f(u)=g(v)=0,取不同的两边xy和x′y′,点x与u合并后得到的图记为G,点x′与v合并后得到的图记为H.  相似文献   

16.
李建湘 《河南科学》2004,22(1):14-17
图被称为K1,n-free图,如果它不含有导出子图K1,n。设G是一个具有顶点集V(G)的图,并设g和f是两个定义在V(G)的函数,使得g(x) f(x)对所有V(G)中的点x都成立。设a=max{g(x)|x∈V(G)},b=min{f(x)|x∈V(G)},并有b,a 2,n b/(a-1) 1(如果存在点v∈V(G)使得f(v)≡1(mod2),假定b n-1)。证明了:每个连通的使得∑x∈V(G)f(x)为偶数的K1,n-free图G有(g,f)-因子,如果它的最小度至少是(n-1)(a 1)b 1「b a(n-1)2(n-1) -n-1b「b a(n-1)2(n-1) 2 n-3.这个结果是K.Ota和T.Tokuda(J.GraphTheory.1996,22:59-64.)关于在K1,n-free图中存在正则因子度条件的推广。  相似文献   

17.
称环R是Armendariz环, 如果(∑mi=0aixi)(∑nj=0bjxj)=0∈R[x], 那么aibj=0,其中0≤i≤m, 0≤j≤n。称环R是reduced环,如果它没有非零的幂零元。称环R是半交换环, 如果由ab=0,可得aRb=0,其中a,b∈R。找到了reduced环上的上三角矩阵环的一类子环既是Armendariz环又是半交换环。  相似文献   

18.
研究*-斜多项式环R[x;*]的*-主拟-Baer性和拟-Baer *-性质,证明了:(1)设R是*-右主拟-Baer环,如果对任意e∈S*l(R)和r∈R,由re=0可以推出re*=0,则R[x;*]也是*-右主拟-Baer环;(2)设*是R上的一个真对合,且R是*-可逆的,则R[x;*]是拟-Baer *-环当且仅当R是拟-Baer *-环。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号