首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ti3SiC2 has the potential to replace graphite as reinforcing particles in Cu matrix composites for applications in brush,electrical contacts and electrode materials.In this paper the fabrication of Cu-Ti3SiC2 metal matrix composites prepared by warm compaction powder metallurgy forming and spark plasma sintering(SPS) was studied.The stability of Ti3SiC2 at different sintering temperatures was also studied.The present experimental results indicate that the reinforcing particles in Cu-Ti3SiC2 composites are not stable at and above 800℃.The decomposition of Ti3SiC2 will lead to the formation of TiC and/or other carbides and TiSi2.If purity is the major concern,the processing and servicing temperatures of the Cu-Ti3SiC2 composite should be limited to 750℃ or lower.The composites prepared by warm compaction forming and SPS sintering at 750℃ have lower density when compared with the composites prepared by SPS sintering at 950℃,but their electrical resistivity values are very close to each other and even lower.  相似文献   

2.
Poly(3,4-propylenedioxythiophene)/nano-Zinic Oxide(PProDOT/ZnO) composites with the content of 3-7 wt%nano-ZnO were synthesized by the solid-state method with FeCl3 as oxidant.The structure and morphology of the composites were characterized by Fourier transform infrared(FTIR)spectroscopy,ultraviolet-visible(UV-vis) absorption spectroscopy,X-ray diffraction(XRD) and transmission electron microscopy(TEM).The electrochemical performances of the composites were investigated by galvanostatic charge-discharge,cyclic voltammetry and electrochemical impedance spectroscopy(EIS).The photocatalytic activities of the composites were investigated by the degradation of methylene blue(MB) dyes in aqueous medium under UV light irradiation.The results from FTIR and UV-vis spectra showed that the PProDOT/ZnO composites were successfully synthesized by solid-state method,and nano-ZnO had great influences on the conjugation length and oxidation degree of the polymers.Furthermore,the PProDOT/5 wt%ZnO had the highest conjugation and oxidation degree among the composites.The results of XRD analysis indicated that there were some FeCl4- ions as doping agent in the PProDOT matrix,and the content of ZnO had no effect on diffraction pattern of PProDOT.Morphological studies revealed that the pure PProDOT and composites had similar morphological structure,and all the composites displayed an irregular sponge like morphology.The results of electrochemical tests showed that the PProDOT/5 wt%ZnO had a higher electrochemical activity with a specific capacitance value of 220 F g-1 than others.The results from photocatalytic activities of the composites indicated that the PProDOT/5 wt%ZnO had better photocatalytic activity than other composites.  相似文献   

3.
Magnetic Co1-xNixFe2O4 nanoparticles (NPs) were successfully synthesized via a solvothermal method using ethylene glycol as solvent.The samples were characterized by X-ray diffraction (XRD),field emiss...  相似文献   

4.
We developed an one-step hydrothermal method to synthesize carbon-nitrogen quantum dots(CNQDs) with oxygen-rich functional groups.The sample was characterized by TEM,AFM,FT-IR,XPS,UV-vis absorption and PL spectra.The 0/C and N/C atomic ratio of typical CNQDs with diameters of 3-6 nm are ca.0.4 and 0.2,respectively.Without noble metal cocatalyst,the photocatalytic H_2 production rate of CNQDs/TiO_2 nanofibers(NFs)(112.4 μmol h~(-1) g~(-1)) is 1.8 times higher than that of TiO_2 NFs.The good absorption of light contributes to the enhanced photocatalytic H_2 performance.The CNQDs could be promising in biomedical imaging,optical data recording storage and photo/electrocatalysis,etc.  相似文献   

5.
LiNi0.5Mn1.5O4-δ which possesses a high voltage of 4.7 V vs.Li+/Li and stable structure has been considered as a promising cathode material for high energy Li-ion batteries.In this study,well-crystalli...  相似文献   

6.
The effect of B2O3 addition on the aqueous tape casting, sintering, microstructure and microwave dielectric properties of Li2O-Nb2O5-TiO2 ceramics has been investigated. The tape casting slurries exhibit a typical shear-thinning behavior without thixotropy, but the addition of B2O3 increases the viscosity of the slurries significantly. It was found that doping of B2O3 can decrease the tensile strength, strain to failure and density of the green tapes. The sintering temperature could be lowed down to 900℃ with the addition of 2 wt% B2O3 due to the liquid phase effect. No secondary phase is observed. The addition of B2O3 does not induce much degradation on the microwave dielectric properties. Optimum microwave dielectric properties of εr 67, Q×f 6560 GHz are obtained for Li2O-Nb2O5-TiO2 ceramics containing 2 wt% B2O3 sintered at 900 1C. It represents that the ceramics could be promising for multilayer low-temperature co-fired ceramics (LTCC) application.  相似文献   

7.
The elastic constants,bulk modulus,shear modulus,Young’s modulus,Debye temperature,isobaric heat capacity and minimum thermal conductivity are estimated for NpO2 using plane-wave pseudopotential method within the local spin density approximation plus Hubbard U(LSDAtU) theory.The computed lattice constants are in good agreement with the available experimental results and then three independent elastic constants were computed by means of the stress–strain method.From the knowledge of the elastic constants,the values of Young’s modulus,Poisson,Debye temperature and minimum thermal conductivity are obtained and they are 218 GPa,0.288,453.5 K and0.99 Wm-1K-1,respectively.The obtained mechanical and thermal properties of NpO2 are in agreement with the previous experimental and theoretical data.Our investigations which are unobtainable from previous report can provide valuable reference in the future.  相似文献   

8.
xLi2MnO3·(1-x)LiNi0.4Co0.2Mn0.4O2(x=0.5) powders were synthesized from co-precipitated spherical metal carbonate,Ni0.2Co0.1Mn0.533(CO3)x.It has been found that the preparation of metal carbonate was si...  相似文献   

9.
Cu(In,Ga)Se2 (CIGS) thin films were prepared by directly sputtering Cu(In,Ga)Se2 quaternary target consisting of Cu:In:Ga:Se 25:17.5:7.5:50 at%. The composition and structure of CIGS layers have been investigated after annealing at 550 ℃ under vacuum and a Se-containing atmosphere. The results show that recrystallization of the CIGS thin film occurs and a chalcopyrite structure with a preferred orientation in the (112) direction was obtained. The CIGS thin film annealed under vacuum exhibits a loss of a portion of Se, while the film annealed under Se-containing atmosphere reveals compensation of Se. Several solar cells with three different absorber thicknesses were fabricated using a soda lime glass/Mo/CIGS/CdS/i-ZnO/ZnO:Al/Al grid stack structure. The highest conversion efficiency of 9.65% with an open circuit voltage of 452.42 mV, short circuit current density of 32.16 mA cm2 and fill factor of 66.32% was obtained on a 0.755 cm2 cell area.  相似文献   

10.
The corrosion activity of amorphous plates of Ca_(60)Mg_(15)Zn_(25)alloy was investigated.The biocompatible elements were selected for the alloy composition.The electrochemical corrosion and immersion tests were carried out in a multi-electrolyte fluid and Ringer's solution.Better corrosion behavior was observed for the samples tested in a multi-electrolyte fluid despite the active dissolution of Ca and Mg in Ringer's solution.The experimental results indicated that reducing concentration of NaCl from 8.6 g/dm~3for Ringer's solution to 5.75 g/dm~3caused the decrease of the corrosion rate.The volume of the hydrogen evolved after 480 min in Ringer's solution(40.1 ml/cm~2)was higher in comparison with that obtained in a multi-electrolyte fluid(24.4 ml/cm~2).The values of opencircuit potential(E_(OCP))for the Ca_(60)Mg_(15)Zn_(25)glass after 1 h incubation in Ringer's solution and a multielectrolyte fluid were determined to be-1553 and-1536 m V vs.a saturated calomel electrode(SCE).The electrochemical measurements indicated a shift of the corrosion current density(j_(corr))from 1062μA/cm~2for the sample tested in Ringer's solution to 788μA/cm~2for the specimen immersed in a multi-electrolyte fluid.The corrosion products analysis was conducted by using the X-ray photoelectron spectroscopy(XPS).The corrosion products were identified to be CaCO_3,Mg(OH)_2,CaO,MgO and Zn O.The mechanism of corrosion process was proposed and described based on the microscopic observations.The X-ray diffraction and Fourier transform infrared spectroscopy(FTIR)also indicated that Ca(OH)_2,CaCO_3,Zn(OH)_2and Ca(Zn(OH)_3)_2·2H_2O mainly formed on the surface of the studied alloy.  相似文献   

11.
The 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) powder had three particle size distributions, while the fine one was lower than 100 nm. The 3Y-TZP compact was prepared by dry-pressing under pressures ranged from 10 to 30 MPa and then presintered at 1250°C for 2 h. The matrix dry-pressed under the pressure of 20 MPa had a porosity of 16.7% and could be easily processed by computer aided design and computer aided manufacturing (CAD/CAM), and which had been infiltrated by the La2O3–Al2O3–SiO2 glass at 1200°C for 4 h. The flexural strength and fracture toughness of the composite were 710.7 MPa and 6.51 MPa m1/2, respectively. The low shrinkage (0.3%) of the composite can satisfy the net-shape fabrication standard. XRD results illustrated that zirconia in the La2O3–Al2O3–SiO2 glass-infiltrated 3Y-TZP all-ceramic composite was mainly in the tetragonal phase. SEM and EDS results indicated that the pores of the matrix were almost filled by the La2O3–Al2O3 –SiO2 glass  相似文献   

12.
A low cost chemical co-precipitation method was employed to fabricate nanoscale Al_2O_3-GdAlO_3-ZrO_2 powder with eutectic composition. A careful control of reaction conditions was required during the preparation. The synthesized nanopowders exhibited a particle size of 20-200 nm, and were highly dispersive and uniform. The results showed that calcination temperature had an important influence on the phase constituents of the nanopowders. With increasing the calcination temperature, a phase transformation from θ-Al_2O_3 to α-Al_2O_3 and a thermal decomposition from Gd_3 Al_5O_(12)(GdAG) to GdAlO_3 and α-Al_2O_3 occurred in sequence. A calcination temperature of 1300 ℃ was needed for the crystallization of α-Al_2 O_3. These nanosized powders were consolidated via hot pressing to produce a fully densified ceramic composite with eutectic composition. The Al_2O_3-GdAlO_3-ZrO_2 ceramic hot-pressed at 1500 ℃ exhibited a relative density of 99.4%, a flexural strength of 485 MPa and a fracture toughness of 6.5 MPa m~(1/2). The ceramic had a thermal conductivity of 1.9 W m K~(-1) at 1200 ℃ and a thermal expansion coefficient of 9.49 ×10~(-6) K~(-1) at 1100 ℃.  相似文献   

13.
The electrical resistivity of the as-consolidated and coarse-grained bulk gadolinium(Gd) metals was studied in the temperature range of 3-315K.The experimental results showed that with decrease in the grain size of Gd grains from micrometer to nanometer range,the room temperature electrical resistivity increased from 209.7 to 333.0 μΩcm,while the electrical resistivity at the low temperature of 3K was found to increase surprisingly from 16.5 to 126.3 μΩcm.The room temperature coefficient resistivity(TCR) values were obtained as 39.2×10-3,5.51×10-3 and 33.7×10-3K-1.The ratios of room temperature to residual resistivity [RRR=ρ(300K)/ρ(3K)] are 2.64,11.0,respectively,for the as-consolidated samples at 280℃ and 700℃ with respect to that of the coarse-grained sample.All results indicate the remarkable influence of the nanostructure on the electrical resistivity of Gd due to the finite size effect and large fraction of grain boundaries.  相似文献   

14.
Rare earth oxides doping has been extensively investigated as one of the effective methods to lower thermal conductivity of 4.55 mol% Y2O3stabilized ZrO2(YSZ) thermal barrier coatings(TBCs).In the present work,5–6 mol% Yb2O3and Y2O3co-doped ZrO2ceramics were synthesized by solid reaction sintering at 1600 1C.The phase stability of the samples after heat treatment at 1500 1C was investigated.Yb2O3and Y2O3co-doped zirconia,especially when Yb2O3/Y2O3≥1,contained less monoclinic phase than single Yb2O3or Y2O3phase doped zirconia,indicating that co-doped zirconia was more stable at high temperature than YSZ.The thermal conductivity of the 3 mol% Yb2O3+3 mol% Y2O3co-doped ZrO2was 1.8 W m 1K 1at 1000 1C,which was more than 20% lower than that of YSZ.  相似文献   

15.
Transparent TiO2 thin films have been prepared by the sol-gel method using titanium alkoxides as precursors.Thin films were deposited on glass supports by the dip-coating technique.The TiO2 layer acts as a self-cleaning coating generated from its photocatalysis and photoinduced superhydrophilicity.The crystalline structure of TiO2 films was dominantly identified as the anatase phase,consisted of uniform spherical particles of about 14-50 nm in size,which strongly depends upon catalyst-type and heat treatment temperature.Increasing heat treating temperature can lead to an increase in crystalline size.The results indicated that the sample S.S(sample derived from sol containing sulfuric acid as catalyst) exhibits superhydrophilic nature and better photocatalytic activity,which can be attributed to its higher anatase content and lower crystalline size.Morphological studies,carried out using Atomic Force Microscopy(AFM),confirm the presence of crystalline phase with such a grain size and low surface roughness.Thus,the applied films exhibiting high photocatalytic activity,superhydrophilic behavior,and low surface roughness can be used as an efficient self-cleaning coating on glass and other optical applications.  相似文献   

16.
General strategies are proposed by passivated co-doping in present paper to improve the photocatalytic activity of semiconductors for degradation of environmental pollutants.The ideal band gap of semiconductors for enhancement of photocatalytic activity can be lowered to match with visible light absorption and the location of the Conduction Band(CB) should be raised to meet the reducing capacity.Then we apply the strategy to anatase TiO2.It is predicted that nonmetal–metal co-doping TiO2can modify the catalyst band edges by raising the valence band(VB) edge signifcantly and making the CB edge increased 0.24 eV.Therefore,the band gap for co-doping system should be narrowed to about2.72 eV.(N,Ta) is predicted to be the target donor–acceptor combination with the band gap of 2.71 eV,which red-shifts the TiO2absorption edge to 457.6 nm in visible range.The band engineering principle will be ft to other wide-band-gap semiconductors for enhanced photocatalytic activity.  相似文献   

17.
La_(0.5)Cr_(0.5)TiO_(3+δ) ceramic sample was prepared via traditional solid-state reaction route. Frequency and temperature dependence of dielectric permittivity were studied in the range of 10~2~ 10~6 Hz and of 77 ~360 K, respectively. It was observed that extraordinarily high low-frequency dielectric constants appeared at room temperature, and dielectric relaxation peaks shifted to higher temperature with increasing frequency. In the dc-bias studies, it was also found that the dielectric permittivity had obviously dc-bias dependence in low frequency, but independence as the frequency above 14 kHz. Interestingly, the dielectric characteristics of the sample had obvious light dependence at room temperature within the measured frequency range. The results demonstrate that visible light improves the dielectric properties of the ceramic by means of I–V and complex impedance analysis.  相似文献   

18.
The ternary magnesium hydride NaMgH 3 has been synthesised via reactive milling techniques.The method employed neither a reactive H2 atmosphere nor high pressure sintering or other post-treatment processes.The formation of the ternary hydride was studied as a function of milling time and ball:powder ratio.High purity NaMgH 3 powder(orthorhombic space group Pnma,a 5.437(2),b 7.705(5),c 5.477(2) ;Z 4) was prepared in 5 h at high ball:powder ratios and characterised by powder X-ray diffraction(PXD),Raman spectroscopy and scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM/EDX).The products formed sub-micron scale(typically 200-400 nm in size) crystallites that were approximately isotropic in shape.The dehydrogenation behaviour of the ternary hydride was investigated by temperature programmed desorption(TPD).The nanostructured hydride releases hydrogen in two steps with an onset temperature for the first step of 513 K.  相似文献   

19.
Ternary mixed metal oxide coatings with the nominal composition IrxRu(0.6-x)Ti0.4O2(x=0, 0.1, 0.2, 0.3) on the titanium substrate were prepared by thermal decomposition of a chloride precursor mixture. Surface morphology and microstructure of the coatings were investigated by Scanning electron microscopy(SEM), Field emission scanning electron microscopy(FE-SEM) and X-ray diffraction(XRD) analysis. Systematic study of electrochemical properties of these coatings was performed by cyclic voltammetry(CV) and polarization measurements. The corrosion behavior of the coatings was evaluated under accelerated conditions(j=2 A cm-2) in acidic electrolyte. The role of iridium oxide admixture in the change of electrocatalytic activity and stability of Ru0.6Ti0.4O2coating was discussed. Small addition of IrO2can improve the stability of the RuO2+TiO2mixed oxide, while the electrocatalytic activity for oxygen evolution reaction(OER) is decreased. The shift of redox potentials for Ru0.6Ti0.4O2electrode that is slightly activated with IrO2and improvement in the stability can be attributed to the synergetic effect of mixed oxide formation.  相似文献   

20.
Ti-Cu-Zr-Fe-Nb ultrafine structure-dendrite composites were designed by inducing Nb and more Ti to a Ti-Cu-Zr-Fe glass-forming alloy composition and prepared by copper mold casting.The composite alloys consist of β-Ti dendrites and ultrafine-structured CuTi2 and CuTi phases as well as a trace amount of glassy phase.The volume fraction of β-Ti dendrites increases with the increase in content of Nb which acted as the β-Ti phase stabilizer in the alloys.The composites exhibit high compressive yield strength exceeding1200 MPa,maximum strength around 1800 MPa and low Young’s modulus around 48 GPa.The plasticity of the alloys is strongly influenced by the volume fraction and morphology of the dendritic β-Ti phase,and the compressive plastic strain was enlarged from 5.9%for the 4 at%Nb alloy to 9.2%for the 8 at%Nb alloy.The preliminary cell culture experiment indicated good biocompatibility of the composite alloys free from highly toxic elements Ni and Be.These Ti-based composite alloys are promising to have potential structural and biomedical applications due to the combination of good mechanical properties and biocompatibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号