首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
把拟AP-内射模的已有性质与拟P-内射模的研究方法 相结合, 给出了拟AP-内射模的一些新性质. 设MR是拟AP-内射的右R-模, 令S=End(MR), 则: (1) S是右弱C2环; (2) 又若对任意非空集合XM,Ls(X)由幂等元生成, 且S是局部的左duo环, 则Ss是连续环.  相似文献   

2.
拟对偶双边模SMR可以被刻画成MR的每一个本质子模K和S的所有本质左理想L分别满足rMlS(K)=K和lSrM(L)=L.拟对偶双边模和对偶双边模的关系表明:一个左拟对偶双边模SMR如果满足下列条件之一,则它成为坐对偶双边模:(1)SM 是单内射的并且MR是一个M-单内射kasch-模; (2)MR是一个M-单内射kasch-模并且对SS 的任意2个理想L1和L2 有rM(L1∩L2)=rM(L1)+rM(L2);(3)SM是单内射的并且对MR的任意2个子模A和B,有lS(A∩B)=lS(A)+lS(B).  相似文献   

3.
设R是一个交换环,C是半对偶R-模。定义并研究了相对于半对偶R-模C的f-内射模,证明了一个R-模同态F→M是M的一个内射(f-内射)预覆盖当且仅当HomR(C,F)→HomR(C,M)是C-内射(C-f-内射)预覆盖。  相似文献   

4.
该文主要研究了Frobenius扩张上的投射余可解Gorenstein平坦模与可分Frobenius扩张上的投射余可解Gorenstein平坦维数.设环扩张R?A是Frobenius扩张,M是任意左A-模.首先证明了若AM是投射余可解Gorenstein平坦模,则RM也是投射余可解Gorenstein平坦模.其次,证明了若环扩张R?A是可分Frobenius扩张,则PGfdA(M)=PGfdR(M).  相似文献   

5.
若每个单奇异左R-模都是JGP-内射模,则称环R为JGP-V′-环.文章主要研究了JGP-V′-环的非奇异性和半本原性,证明了如下结果:1)若R是左JGP-V′-环,则Z(RR)∩J(R)=0;2)若R是左拟duo-环、左JGP-V′-环,则R是左非奇异环;3)若R是左拟duo-环、左JGP-V′-环,则R是半本原环.  相似文献   

6.
设τ=(T,F)表示遗传挠理论,引入了对偶τ-Rickart模的概念.称M是对偶τ-Rickart模,如果对任意ψ∈End(M),π-1τ(Im ψ-)=Im ψ+τ(M)是M的直和因子.研究了对偶τ-Rickart模的性质,给出了对偶τ-Rickart模的等价刻画.进而,证明了M是τ-Rickart模并且Mτ(M)具有C2条件当且仅当M是对偶τ-Rickart模并且Mτ(M)具有D2条件.  相似文献   

7.
设A,B是含单位元的Banach代数, M是一个Banach A,B-双模。 T=(A MB) 按照通常矩阵加法和乘法,范数定义为‖(a mb)‖=‖a‖A+‖m‖M+‖b‖B,构成三角Banach代数。通过作用(f hg)(a mb)=f(a)+h(m)+g(b), T的对偶空间 T*为(A* M*B*)。 在T*上定义模作用 (a mb)·(f hg)=(a·f+m·h b·hb·g), (f hg)·(a mb)=(f·a h·ah·m+g·b), 使其成为一个对偶Banach T-双模。从T到T*的映射称为对偶模映射。 本文对T上对偶模Jordan导子和对偶模广义导子进行讨论, 给出了T上对偶模Jordan导子是对偶模导子的一个充分条件并且对T上对偶模广义导子进行了刻画。  相似文献   

8.
本文证明了如下结果:(1)右强FC环为左FGF环;左FP—内射的左FGF环为右强FC环;(2)左FGF环为半单环或lD(R)=∞;(3)若单右R—模的内射闭包为f—投射模,则f.g.右R—模为无挠模;(4)左R—模M为f—投射模的充要条件是对任意f.g.左R—模P,自然映射:P~*(?) M→hom_R(P,M)为满同态。  相似文献   

9.
在这篇文章中,我们引入并研究了Artin-代数上的半对偶化模对,它推广了由Miyashita定义的倾斜模对的概念.一方面,我们把有关半对偶化模的相关结论推广到了半对偶化模对上。另一方面在任意结合环R上,我们给出了半对偶化模的一个刻画.  相似文献   

10.
文献[2]中讨论了拟双代数Smash积的性质,若代数A关于拟三角拟双代数H的作用量子交换[1],则本文得到smash积A#H的模范畴A#HM关于 A和代数A构成张量范畴.进一步,研究了HM的辫结构诱导出A#HM辫结构的充要条件.最后引入余拟三角对偶拟双代数及量子余交换余代数的概念,获得对偶情形的结果.引理1 设(H,Φ,R)是拟三角拟双代数,A为量子交换的左H 模代数,则A#HM中任意对象M有A A双模结构,其中M的右A 模结构为:m a=∑(R2·a) (R1·m).定理2 设(H,Φ,R)是拟三角拟双代数,A为量子交换的左H 模代数,则(A#HM, A,A)是张量范畴.更明确地,…  相似文献   

11.
拟AP-内射模的自同态环   总被引:1,自引:1,他引:0  
设R为环,MR是拟AP-内射模,S=End(MR), N(S)表示S的幂零元之集。研究了满足升链条件的环S的强正则性和半单性以及与一些特殊环的关系。  相似文献   

12.
环R称为左(右)SF)环,如果所有单左(右)R-模是平坦的。环R称为I-环,如果R的每个非零左理想含有非零幂等元。在本文中,我们证明了如下主要结果:(一)对于环R,如下条件是等价的:(1)R是Artin半单环;(2)R是左SF-环县R/Z(RR)是Artin单环;(3)R是左非奇异的,左SF-环县RR具有有限秩;(4)R是正交有限的I-环。(二)R是基层不为零的正则左自内射环当县仅当R是包含非奇异  相似文献   

13.
Richart模     
本文引入左Richart模的概念.设M是左R模,若EndR(M)中任意元φ在M中的左零化子是M的直和项,则称M是左Richart模.左Richart模是左Richart环的推广.在文章中我们给出了左Richart环和左Richart模的等价刻画条件.探讨了Baer模和左Richart模的关系及左Richart模的性质:Baer模是左Richart模,而左Richart模不一定是Baer模;左Richart模的直和项是左Richart模,但左Richart模的直和不一定是左Richart模,我们给出了左Richart模对直和封闭的等价条件;并且证明了有限生成的Abel群是左Richart模当且仅当它是半单模或无挠模.此外,我们还探讨了左Richart模与一些重要的环、模类之间的关系,得到了左Richart模的自同态环是左Richart环,以及左Richart环的中心是VN-正则环.特别地,当模的自同态环是交换环时,模是左Richart模当且仅当它的自同态环是VN-正则环.  相似文献   

14.
Some weak asymptotic results for average σ-K width and average σ_L width of the isotropic Besov classes S r pθB(R d), S r pθb(R d) and the anisotropic Besov classes S r pθB(R d), S r pθb(R d) in L p(R d) (1≤p<∞) are obtained, and the corresponding weak asymptotic optimal subspaces are identified. Furthermore, the weak asymptotic behavior of optimal recovery is established for the isotropic Besov classes S r pθB(R d) in L p(R d) (1≤p≤∞).  相似文献   

15.
定义了quasi-dual模,讨论了它的性质和等价条件,并且通过quasi-dual模,详细讨论了V-环的一个新的推广结构,得到了以下等价条件:①R/Soc(RR)是右V-环;②每一个R的本质真右理想是极大右理想的交;③存在一个奇异半单右R-模是quasi-dual的.  相似文献   

16.
证明了右R-模M是内射的当且仅当分次左^-R-横^-M是gr-内射的,当且仅当分次左^-R-模M是gr-内射的;左R-模M是Noether的当且仞当分次左R[x]-模M[x]是gr-Noether的,当且仅当分次左R[x]-模M[x]是Noether的;左R-划M是Artin的当且仅当分次左R[x]-模M[x]是gr-Artin的,当且仅当分次左R[x]-模M[x]是Artin的;双模RMS定义了  相似文献   

17.
利用齐次Morrey-Herz空间MKα,λp,q(Rn)与齐次Herz空间Kα,pq(Rn)之间的关系, 推广了Kα,pq(Rn)上的一些结果, 在 MKα,λp,q(Rn)上建立了具有粗糙核的分数次积分交换子TbΩ,l及多线性分数次积分算子TAΩ,l的中心有界平均振荡函数空间(CBMO)估计, 并得到了分数次极大交换子MbΩ,l和多线性分数次极大算子MAΩ,l的相应结果.  相似文献   

18.
分次非奇异三角矩阵环   总被引:1,自引:1,他引:0  
设Ω是一个适合左(右)消去律的Monoid, S=x∈ΩSx和T =x∈ΩTx是两个有1的Ω分次环, B=SBT=x∈ΩBx是一个Ω分次(S,T)双模, R是由它们确定的Ω分 次三角矩阵环. 证明了当SB是分次忠实模时, R是分次非奇异环当且仅当T是分 次非奇异环, BT是分次非奇异模.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号