首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
一种改进的再生制动控制策略优化   总被引:1,自引:0,他引:1  
为了充分利用混合动力汽车的再生制动能量,提高整车燃油经济性,通过分析混合动力汽车再生制动系统的工作原理,依据理想的前后轮制动力分配曲线,基于比例控制策略,提出了一种并行制动力的分配策略,以对摩擦制动力和再生制动力进行合理分配.进而以平均再生制动力为目标,选取制动控制策略控制曲线上的关键点坐标为控制变量,对并行再生制动控制策略进行了优化设计.选取Saturn SL1为研究车型,在市区15工况下进行了仿真研究.结果表明,优化后的并行控制策略既可以满足制动安全性的要求又可以回收更多的制动能量.  相似文献   

2.
混联式混合动力再生制动控制策略   总被引:1,自引:0,他引:1  
 再生制动系统是混合动力汽车和电动汽车特有的系统。该系统可将汽车制动过程中消耗的汽车动能和势能通过电动机发电的方式储存到电池中,在起动和加速过程中加以利用。本研究以长丰CJY6470E越野车为对象,在传统汽车制动理论的基础上,基于制动安全及制动效能,提出一种混联式混合动力汽车制动能量分配与再生制动控制策略。前后轴采用理想制动力分配,在分配好后,再对前后轴的再生和摩擦制动进行二次分配。进行二次分配时,主要考虑电机及电池的使用寿命,以车速及SOC作为电机再生制动功率影响因素,并通过对ADVISOR2002进行二次开发,建立整车模型,最后进行仿真。结果表明,采用所提出的再生制动控制策略可实现高效的制动能量回收,延长电池的使用寿命,且该策略具有可行性。  相似文献   

3.
考虑混合动力汽车制动安全性和燃油经济性,提出了一种基于电池SOC值和制动强度的再生制动力控制策略.提出了通过调节CVT的速比及控制电机工作在高效区来提高电机发电效率的再生制动控制方法.进行了整车再生制动系统建模和典型城市驱动循环工况下的仿真,结果表明,提出的CVT速比控制策略能使以CVT为变速器的混合动力汽车比以MT为变速器的混合动力汽车在ECE EUDC驱动循环工况下的再生制动能量回收率提高2.86%.  相似文献   

4.
针对混合动力汽车制动过程中机械制动力与电再生制动力的分配问题,在制动稳定区间内,以尽可能多地回收制动能量为目标,提出了一种最大化制动能量回收的并联式混合动力汽车再生制动控制策略。建立整车与制动控制器模型,仿真结果表明:与传统固定制动力分配比例的控制策略相比,本文所设计的并联式混合动力汽车的制动能量回收率提高了22.8%,燃油经济性提高了4.7%,CO排放量降低了4.4%。  相似文献   

5.
全轮驱动混合动力汽车再生制动系统控制策略   总被引:1,自引:0,他引:1  
在传统汽车制动理论的基础上,基于最大回收制动能量和制动的安全性,提出了一种全轮驱动混合动力汽车制动能量分配与再生制动控制策略.综合考虑电机电池效率等限制因素后,进行整车再生制动系统建模和典型制动工况下的仿真.结果表明,在制动车速为30 km/h,制动强度Z分别为0.1、0.3、0.5下最大能量回收率分别可达87.5%、47.8%、28.6%,采用提出的制动能量分配与再生制动控制策略能满足整车制动力分配的要求,并实现高效的制动能量回收.  相似文献   

6.
为解决电动汽车制动能量回收少的问题,提出了一个基于模糊逻辑的再生制动能量回收策略.可在考虑系统制动特性的基础上合理分配前后轮的制动力,分配摩擦制动和再生制动力,使制动能量回收最大化.基于该策略在Matlab/Simulink环境下建立了模糊控制模型,并嵌入仿真软件ADVISOR进行仿真.实验结果表明,该控制策略相对于ADVISOR本身的回收策略,制动能量回收效率提高30%以上,有效解决了制动能量回收少问题.  相似文献   

7.
电动汽车再生制动能量回收系统可以提高其续航里程。本文以某前驱型电动汽车为研究对象,分析了其在行驶过程及制动过程中制动力分配情况,综合考虑ECE制动法规、电机峰值转矩及电池充电性能等主要限制性条件,融合驾驶员制动强度判别特性,提出了一种适合本文电动汽车的再生制动力分配控制策略;基于MATLAB/Simulink软件平台进行了建模仿真,并将仿真结果与理想制动力分配策略进行对比。结果表明,该控制策略能够在保证制动效能的同时实现能量回收,能量回收效率达到34.179%,高于理想制动力分配策略。  相似文献   

8.
电动汽车再生制动控制策略研究   总被引:4,自引:0,他引:4  
制定合理的再生制动控制策略,使其在保证制动稳定性的基础上,最大限度回收制动能量. 通过对汽车制动动力学和相关法规的分析,结合电机的输出特性,建立了电机模型,提出了一种前后轮制动力分配的控制策略,并在Advisor软件上进行了仿真分析. 与常用的比例制动控制策略相比,该控制策略能充分利用电机的制动转矩,大幅提高制动能量的回收;同时也很好地满足了制动稳定性要求.  相似文献   

9.
纯电动汽车电液复合再生制动控制   总被引:1,自引:0,他引:1  
针对纯电动汽车电液复合再生制动过程机电制动力的动态分配问题,通过对制动动力学和ECE R13-H制动法规的分析,从理论上确定纯电动汽车电液复合再生制动的安全运行范围。在安全制动范围内,开发了以最大限度回收能量为目标,达到需求制动强度而前、后轴又不抱死的再生制动控制流程,生成机电制动力分配矩阵。以制动强度分别为0.2,0.3,0.4,0.5和0.6,初始车速为16.67 m/s,结合ECE-EUDC道路循环,构建新的仿真循环,将车辆参数、制动力分配矩阵、道路循环嵌入ADVISOR2002软件。研究结果表明:仿真运行1个道路循环后,电池荷电状态SOC(State of charge)相对原策略有较明显的提高,提高幅度达4.5%,较好地回收了制动能量,更重要的是保证了制动安全,表明开发的控制策略是有效的。  相似文献   

10.
基于模糊神经网络控制的汽车辅助再生制动系统研究   总被引:1,自引:0,他引:1  
将驾驶安全性和制动能量回收相结合,提出了基于模糊神经网络控制的汽车辅助再生制动系统.通过试验数据建立基于驾驶员经验的模糊神经网络,实现根据驾驶车辆与前车的相对距离和相对速度动态调整制动强度;通过计算得到不同的车速和制动强度下,前轮再生制动力,前、后轮摩擦制动力查询表;将模糊神经网络和制动力查询表嵌入配备比例阀的制动系统从而完成辅助再生制动系统的设计.在Simulink下搭建此辅助再生制动系统模型进行仿真实验,结果表明,此再生制动系统可以有效辅助驾驶安全,避免追尾事故发生,并可充分回收制动能量.  相似文献   

11.
为改善电动汽车的再生制动能量回收率,设计了一种以驾驶员制动、车速、电池荷电状态(SOC)和电池组温度为输入参数,以再生制动力为输出的Sugeno型模糊算法控制器。通过改进ADVISOR中VEH_SMCAR车模型的原有制动力分配规则,电池SOC、电池电流和电机转矩得到提高。仿真结果表明:改进的模糊控制算法和制动力分配规则合理可行,在保证车辆良好制动性能的前提下,可以降低电池在一个CYC_UDDS循环工况下的耗电量,提高能量利用率,有效延长电动汽车一次充电续驶里程。该研究为纯电动汽车再生制动控制策略的制定提供了参考。  相似文献   

12.
为了保证制动安全性,需要将再生制动与原车的ABS系统进行协调控制。基于半挂汽车列车按固定比值分配制动力的制动器结构,提出了适用于三轴车辆的最优能量回收控制策略。根据制动强度、蓄能状态与路面附着条件,分配三轴间机械摩擦与再生制动力,调节摩擦制动力以控制车轮滑移率。利用AMESim和MATLAB/Simulink建立了联合仿真模型。结果表明,协调控制策略可以使制动能量回收率在中低附着路面、中度制动工况下达到13.48%,同时三轴制动时的滑移率均维持在最佳范围内。  相似文献   

13.
以电动汽车的再生制动与防抱死制动系统协调控制为研究对象,提出一种协调控制方法.采用滑模控制研究防抱死,并证明带有电机制动力矩时控制的稳定性.进而提出不影响滑模控制的滑移率门限值,并设计了协调控制算法.最后,在Simulink环境下搭建了整车模型,选择高、低附着系数路面工况对所提出策略进行仿真,结果验证了协调控制算法的正确性.  相似文献   

14.
基于发动机制动的HEV再生制动控制策略   总被引:1,自引:1,他引:0  
以ISG(integrate starter generator)型混合动力CVT(continuously variable transmission)轿车为研究对象,进行发动机制动性能建模与仿真计算,提出基于前轮最大可承受减速度的制动力最优分配策略.无再生制动时,根据发动机制动特性计算,通过调整CVT速比来以充分利用发动机制动;有再生制动时,优先采用电机制动,其次为发动机机制动,最后为摩擦制动.进行基于控制策略的混合动力汽车再生制动建模和典型工况下的仿真分析,仿真结果验证所提出的再生制动控制策略的正确性和可行性.  相似文献   

15.
带有制动能量再生系统的公共汽车制动过程   总被引:11,自引:4,他引:7  
带有制动能量再生系统汽车的制动过程与传统汽车的制动过程有所不同.通过对城市公共汽车再生制动力矩和车轮液压制动模型的分析,把再生制动力矩折算成相应的液压制动踏板行程.从而使再生制动力矩产生的制动感觉和液压制动感觉一致.对纯再生制动模式、紧急制动模式和一般制动模式三种情况下的制动距离进行分析计算,提出了城市公共汽车再生制动的控制策略.结果表明,制动安全主要取决于紧急制动距离,而制动能量回收的多少主要取决于纯再生制动模式和一般制动模式下的制动距离.推导出的紧急制动距离公式在设计带有能量再生制动系统汽车时,可用于计算、校核其制动安全距离.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号