首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
研究了磷钨酸 (H3PW12 O4 0 ,简记为PW12 )及其钠盐 (NaxH3-xPW12 O4 0 ,简记为NaxH3-x,x =1~ 3)催化苯酚与苯乙烯的烷基化反应 .NH3 TPD及吡啶热脱附结果表明 :随着钠含量的增加 ,催化剂的酸性及催化活性皆依次降低 :PW12 >Na1H2 >Na1.5H1.5>Na2 H1>Na2 .5H0 .5>Na3.  相似文献   

2.
采用杂多酸H3PMo12O40为氧化剂和掺杂剂,化学氧化法制备掺杂态聚吡啶.用红外光谱、扫描电镜等手段表征产物的结构和微观形貌,并研究掺杂态聚吡啶的循环伏安特性和热稳定性.结果表明,制备的掺杂态聚吡啶形貌为0.1~0.6 μm的不规则颗粒,能表现出杂多酸和掺杂态聚吡啶的电化学行为,并具有一定的热稳定性,聚吡啶在511 ℃以上分解失重.  相似文献   

3.
在室温条件下,采用浸渍法合成的H3PW12O40/Si O2为催化剂,高效催化酮、芳香醛和苯胺的Mannich反应合成系列β-氨基酮衍生物.对新型催化剂H3PW12O40/Si O2的制备条件进行优化,系统地研究了H3PW12O40负载量、焙烧温度、活化时间对催化剂的影响.探讨了H3PW12O40/Si O2对酮、芳香醛和苯胺的Mannich反应的催化活性,系统地研究了反应温度、催化剂用量、反应物的摩尔比等因素对产物收率的影响.实验结果表明:在n(酮)∶n(芳香醛)∶n(苯胺)=1.5∶1.2∶1.0,催化剂的用量占反应物料总质量的8%,反应温度为20℃,反应时间为9 h的最佳条件下,β-氨基酮衍生物的收率在61.2%~77.0%之间.整个反应体系具有条件温和、操作简单、不污染环境和催化剂可重复回收利用等优点.  相似文献   

4.
制备了负载型磷钨酸铯(Cs2.5H0.5PW12O40/Sio2)固体酸醚化催化剂,考察了载体性质,制备条件对催化剂性能的影响,并考察了工艺条件对叔碳烯烃转化率的影响,研究结果表明,大孔硅胶是Cs2.5H0.5PW12O40的适宜载体,硅胶的钠含量越低,制备的Cs2.5H0.5PW12O40/Sio2催化剂的活性越高,制备的Cs2.5H0.5PW12O40/Sio2催化剂均具有较强的酸性,催化活性以及良好的稳定性,是一种理想的醚化催化剂,在温度为80℃,压力0.8MPa。空速1h^-1,n(甲醇)/n(叔碳烯烃)比=1.1的反应条件下,叔碳烯烃转化率达到56.54%。  相似文献   

5.
研究了磷钨酸(H3PW12O40,简记为PW12) 及其钠盐(NaxH3-xPW12O40,简记为NaxH3-x,x=1~3)催化苯酚与苯乙烯的烷基化反应.NH3-TPD及吡啶热脱附结果表明:随着钠含量的增加,催化剂的酸性及催化活性皆依次降低:PW12>Na1H2>Na1.5H1.5>Na2H1>Na2.5H0.5>Na3.  相似文献   

6.
采用室温沉淀法制备了一系列铯取代磷钨杂多酸盐(CsxH3-xPW12O40,x=0.5,1.0,1.5,2.0,2.5,3.0),考察了不同铯取代度对所制杂多酸盐结构及其催化苯甲醛氧化制苯甲酸反应性能的影响.利用液氮吸附-脱附(N2adsorption-desorption)、扫描电镜(SEM)、X-射线衍射(XRD)、傅里叶红外光谱(FT-IR)、固体紫外可见漫反射光谱(DR UV-vis)等手段进行了表征.结果表明:CsxH3-xPW12O40完好地保持了H3PW12O40的Keggin晶相;随着铯取代度x的增大,CsxH3-xPW12O40的颗粒逐渐均匀,同时晶胞参数逐渐减小,表面积和孔容则随之增大.在相同的实验条件下,所制CsxH3-xPW12O40均呈现出较高的催化活性:在Cs3PW12O40催化作用下,苯甲酸的收率达到72%,而其他催化剂作用下达到76%,均优于H3PW12O40的催化活性(71%).  相似文献   

7.
介绍了31P核磁共振监测下,MOH(M=Li+,Na+,K+,Mg+,Ca2+)滴定不同浓度的H3PW12O40(简称PW12)的水解情况.从中得出由PW12制备PW11M适宜的pH条件.  相似文献   

8.
采用溶胶 凝胶方法制备了Keggin结构PW12O3-40 ZrO2微孔杂化材料,并通过N2吸附等温数据测定、原子发射光谱(ICP AES)、吡啶吸附傅立叶变换红外光谱(FTIR)、固体核磁共振波谱(MASNMR)等测试手段对其结构进行了表征.结果表明,杂化材料中的Keggin结构阴离子仍然保留其基本骨架结构,并与ZrO2载体之间存在着较强的化学作用.制得的PW12O3-40 ZrO2复合材料能在温和条件下高选择性、高效率地催化合成碳酸丙烯酯.  相似文献   

9.
纳米磷钨酸银光催化剂的微波固相合成   总被引:1,自引:0,他引:1  
首次应用微波辐射以H3PW12O40和AgNO3为原料,固相反应合成出Ag3PW12O40.12H2O纳米微粒;用FT-IR、UV-vis、TG-DTA确定产物的组成和结构;SEM和BET对产物的形貌、晶粒尺寸和比表面积进行了表征;结果表明,产物为纳米粒子,平均粒径为40 nm,比表面积为179.6938 m2.g-1.在固相反应中,结晶水能形成无数微小的反应水池,限制了产物粒子的晶粒尺寸大小,在微波的磁场和电场作用下,Ag+有序定向的扩散到[PW12O40]3-的外表面,由于微波有极强的穿透力,对样品是内外一起加热,物体快速均匀地升温,从而使游离的H2O、NO2和CO2瞬间同时均匀的挥发出来,溢出的气流阻止了Ag3PW12O40.12H2O颗粒间的团聚.图4,参9.  相似文献   

10.
以硅胶为载体,制备了负载型的Cs2.5H0.5PW12O40催化剂,将该催化剂用于乙酸与1-丁烯的酯化反应和叔戊烯与甲醇的醚化反应,考察了其活性组分负载量、载体硅胶性质和焙烧温度对催化剂性能的影响. 研究了催化剂用量、反应温度、反应压力、n(1-丁烯)/n(乙酸)、反应时间等反应条件对酯化反应中乙酸转化率的影响. 与其他类型催化剂的醚化活性进行了对比,并进行了Cs2.5H0.5PW12O40/SiO2催化剂的醚化稳定性实验. 结果表明,以低钠硅胶为载体,在活性组分负载量为40%,焙烧温度为300~400 ℃时制备的Cs2.5H0.5PW12O40/SiO2催化剂具有较高的催化活性. 随着负载量增大,催化剂孔径、孔容和比表面积减小,而催化活性先增加后减小. 在反应温度120 ℃、压力1.5 Mpa、n(1-丁烯)/n(乙酸)比3.0、催化剂用量4%、反应时间7 h的条件下进行酯化反应,乙酸的转化率为87.36%. 在反应温度80 ℃、压力1.0 Mpa、n(甲醇)/n(叔戊烯)比1.1、LHSV为1 h-1的条件下进行醚化反应,叔戊烯的转化率为68.57%. 制备的新型Cs2.5H0.5PW12O40/SiO2催化剂对于乙酸与1-丁烯的直接酯化反应和叔戊烯与甲醇的醚化反应具有良好的活性与选择性,催化剂寿命长. 因此,Cs2.5H0.5PW12O40/SiO2是一种理想的乙酸与烯烃直接酯化和叔戊烯与甲醇醚化反应的催化剂.  相似文献   

11.
介绍了31 P核磁共振监测下 ,MOH(M =Li+ ,Na+ ,K+ ,Mg+ ,Ca2 + )滴定不同浓度的H3PW1 2 O4 0(简称PW1 2 )的水解情况 .从中得出由PW1 2 制备PW1 1 M适宜的 pH条件  相似文献   

12.
报道了利用无机酸溶解、焙烧、浸取、结晶、沉淀等方法,从废Ti(C,N)基金属陶瓷中分离(Ti、W、Mo、Ni)各种金属成分,制备12-磷钨酸(H3PW12O40)、12-磷钼酸(H3PMo12O40)、固体超强酸(SO4^2/TiO2)、硫酸镍等化学试剂的原理与工艺.  相似文献   

13.
采用溶胶一凝胶技术将Keggin型H3PW12O40负载在SiO2上,并用H2O2溶液对其进行敏化,制得HsPW12O40/SiO2/H2O2光催化剂.考察在模拟自然光条件下,甲基紫的初始浓度、溶液pH以及催化剂用量对甲基紫可见光催化降解率的影响.实验发现,在甲基紫初始浓度为30mg/L,溶液pH为2.5,催化剂的用量为0.6g/L的优化情况下,光降解2.5h,甲基紫的降解率达到92%.  相似文献   

14.
磷钨酸/硅胶催化剂催化合成苯甲醛1,2-丙二醇缩醛   总被引:2,自引:0,他引:2  
以自制磷钨酸/硅胶为多相催化剂,以苯甲醛和1,2-丙二醇为原料合成苯甲醛1,2-丙二醇缩醛,采用正交试验探讨了合成苯甲醛1,2-丙二醇缩醛的影响因素.实验结果表明:固定苯甲醛物质的量为0.2mol,在n(苯甲醛)∶n(1,2-丙二醇)=1∶1.6,催化剂用量为反应物料总质量的0.75%,带水剂环己烷为10 mL,反应时间30 min的条件下,苯甲醛1,2-丙二醇缩醛的收率为75.9%.  相似文献   

15.
Microporous Keggin-type polyoxometalate material was synthesised by supporting H3PW12O40 into a silica matrix via a sol-gel technique. The silica-supported 12-tungstophosphoric acid (H3PW12O4o/SiO2) obtained is insoluble and readily separable porous materials with uniform micropores (0.57 nm) and a high specific surface area (350.5 m2/g) in oxygen-containing polar solvents. H3PW12 O40/SiO2 was characterized by infrared spectrophotometer (IR), ultraviolet-visible spectrophotometer (UV-vis), inductively coupled plasma (ICP), thermogravimetric analysis (TGA) and Brunner-Emmett-Teller method (BET) measurements. H3PW12O40/SiO2 obtained catalyzed the acetal reaction between benzaldehyde and ethylene glycol to produce 2-phenyl-1, 3-dioxolane more efficiently than the typical solid acids such as SO2-4/ZrO2, Nafion-H and H-ZSM-5. Conversion was 93.8 % for benzaldehyde during the reaction period of 2 h.H3PW12O40/SiO2 kept its initial activity during three times of reuse. The initial acetal reaction follows a second-order kinetics model at 298 K.  相似文献   

16.
合成一种咪唑-磷钨酸杂化固体酸1-(3-磺酸基)丙基-3-甲基咪唑磷钨酸盐([MIMPS] 3PW12O40),并将其应用于催化纤维素的水解反应之中.与H2SO4,HCl,对甲苯磺酸(p-TSA)以及H3PW12O40相比,[MIMPS] 3PW12O40的催化活性与反应选择性都更佳.通过单因素法对反应温度、反应时间、催化剂用量、固液比等进行考察与优化,结果发现:在453 K下,n([MIMPS]3PW12O40)∶n(纤维素)=5.8%时,即可极大地促进纤维素链的断裂、解离和水合;水解反应仅3h后,还原糖和葡萄糖的产率分别为34.0%,21.0%.此外,调节反应体系的pH值约为2时,催化剂以固体沉淀的方式得以回收,且经过5次重复利用后仍能保持良好的催化性能.  相似文献   

17.
以室温沉淀法制备了一系列铵取代磷钨杂多酸盐催化剂(NH4)xH3-xPW12O40(x=0.5,1.0,1.5,2.0,2.5,3.0),用X-射线衍射(XRD)、傅里叶-红外光谱(FT-IR)、固体紫外-可见漫反射光谱(DR UVVis)、扫描电镜(SEM)、氮气吸附-脱附(N2adsorption-desorption)等手段对其进行了表征,并考察了它们在H2O2氧化苯甲醛制苯甲酸反应中的催化活性.结果表明,NH4+取代H+后形成的杂多酸盐仍很好地保持了Keggin结构;随着NH4+取代度的增大,(NH4)xH3-xPW12O40的颗粒逐渐均匀,晶格常数逐渐减小,而比表面积和总孔容呈先增大后减小的趋势;在相同实验条件下,所制(NH4)xH3-xPW12O40的催化活性均优于H3PW12O4(71%),其中在(NH4)2.5H0.5PW12O40催化作用下,苯甲酸收率达到最高(76%).  相似文献   

18.
导电聚苯胺不同纳米结构的制备   总被引:1,自引:1,他引:0  
分别以纤维状材料(如H3PW12O40/PVA纤维、头发丝、涤纶丝、玻璃丝、细铜丝)、环状材料(如细铜丝环、头发丝环)以及膜状材料(如保鲜膜)等为模板,以杂多酸H3PW12O40为掺杂剂,过二硫酸铵为氧化剂,制备了具有不同纳米结构的多酸掺杂聚苯胺材料.采用红外光谱和扫描电镜对聚苯胺进行了结构和形态表征.结果表明:模板形态对聚苯胺纳米结构有较大的影响,纤维状模板导致聚苯胺具有纳米棒结构,直径在300~400 nm之间;环状模板导致聚苯胺具有微米球结构,直径在1 000~3 000 nm之间;膜状模板导致聚苯胺具有片状结构.所得材料的电导率均大于0.1 S/cm.  相似文献   

19.
以纳米型复合杂多酸H3PW12O40/SiO2为催化剂,以肉桂酸和异戊醇为原料,来合成肉桂酸异戊酯.结果表明:纳米复合磷钨酸是合成肉桂酸异戊酯的良好催化剂;适宜的工艺条件为:酸醇物质的量比为1:2.5,催化剂用量为0.6g/0.05mol肉桂酸,回流时间为3h,酯化率可达96.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号