首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
设R是一个环,称环R的元素e为拟幂等元,如果存在R的某个中心单位k,使得e2=ke。若R中的每个元素都存在拟幂等元e∈R,q∈Rqnil使得e∈comm2(a),并且a=e+q,则称环R是强quasinil quasi-clean环。若环R中每个元素a都存在一个拟幂等元e∈R使得e∈comm2(a),a+e∈U(R)且ae∈Rqnil,则称R是拟quasi-polar环。本文首先证明拟quasi-polar环与quasi-polar环等价,在此基础上进一步证明强nil quasi-clean环是强quasinil quasi-clean环,强quasinil quasi-clean环是quasi-polar环,但反之均不成立。  相似文献   

2.
若存在子群K使得G=HK,且对于H的任意极大子群H1,有H1K为G的真子群,则称子群H在G中是M-可补的.利用M-可补子群的性质对p-幂零群结构进行研究,得到一些新结果:①设G是有限群,p是|G|的奇素因子,P∈Sylp(G),则G是p-幂零群当且仅当P在G中M-可补,且NG(P)是p-幂零群.②设G是有限群,p是|G|的奇素因子,P∈Sylp(G).若P的任意极大子群在G中M-可补,且NG(P)是p-幂零群,则G是p-幂零群.  相似文献   

3.
文中利用c-可补子群的性质讨论了有限群的p-幂零性,设G是一个与A4无关的有限群,且p∈π(G)使得(G,p-1)=1。如果G中存在一个正规子群N,使得G/N是p-幂零,且N的每个p2阶子群在G中c-可补,那么G是p-幂零群。  相似文献   

4.
主要研究了特征标维数集合是{1,p~m}的有限p-群G,证明了若这类有限p-群G的幂零类大于或者等于3,则|G|≥p~(3m+1).特别地,如果G的特征标维数集合与共轭类长度集合都是{1,p~m},那么G的幂零类是2且|G|≥p~(3m).  相似文献   

5.
设R是有单位元的结合环.设x∈R,若存在y∈R和正整数n,使得x~n=yx~(n+2)(x~n=x~(n+1)y),则称x是左(右)π-正则元.如果x既是左π-正则元又是右π-正则元,则称x是强π-正则元.若环R中的每一个元素都是强π-正则元,则称R是强π-正则环.给出了R*_θG是强π-正则的充分或必要条件,其中θ是群G到由R的自同构所构成的群Aut(R)的群同态.  相似文献   

6.
若环R的每一非零子环都含有R的一非零左理想,则称R为广义左Hamilton环,简记为GLH-环.本文给出了诣零广义左Hamilton环的元刻划,证明了定理1 诣零环R为GLH-环的充要条件是,(?)a∈R, a≠0,有n∈Z~+使na或na~2为R的非零绝对右零因子.同时给出了诣零GLH-环幂零的一条件,证明了定理2 R为2-扭自由的诣零GLH-环,令R_D={x∈R|P~(n(x))x=0}.若有正整数N,使对任何素数p及(?)~x∈R_p,有o(x)相似文献   

7.
一类有限p-中心p-群   总被引:1,自引:0,他引:1  
探讨了一类有限p-中心p-群,得到了:若G是p-中心p-群且G∈BI(pm),其中m=2n+e,e=0,1.则有下面的结论成立:Gpm≤Z(G);如果e=0,则Gp n是交换群,如果e=1,则Gpn+1是交换群;cl(G)≤m+1.  相似文献   

8.
称环R是强P-clean的如果环R中的每一个元素都可以表示成一个幂等元与一个强幂零元之和.本文中我们研究了一些3×3矩阵环的强P-clean性.称环R为强2-P-clean的.如果环R中的每一个元素可以表示成一个tripotent元与一个强幂零元之和.我们证明了如果一个环是强2-P-clean的,当且仅当对于环R中的任意元素a有a~3-a∈P(R)以及存在环R中正交幂等元e和f使得a-e+f∈P(R).进而我们得到了强2-P-clean矩阵子环的相关结论.  相似文献   

9.
利用弱c#-正规子群研究有限群的p-幂零性,得到以下结论:①设G是群,HG,使得G/H为p-幂零,P∈Sylp(G),若P的极大子群皆在G中弱c#-正规且NG(P)为p-幂零,则G为p-幂零.②G是群,HG使得G/H为p-幂零,P∈Sylp(H),若P的2-极大子群皆在G中弱c#-正规且NG(P)为p-幂零的,则G为p-幂零.  相似文献   

10.
定义了环R的一个子集,记做J(R)(12)={a∈R|a2∈J(R)}.称环R中的一个元素a是强J12-clean元,如果存在一个幂等元e∈R和一个元素w∈J(R)(1/2)使得a=e+w且ew=we.如果环R中每个元素都是强J12-clean元,称环R是强J12-clean环.文章研究了强J12-clean环的一些性质和局部环上矩阵环的强J12-clean性.  相似文献   

11.
证明了如下结果:①环R是强左DS环当且仅当R是左DS环和强左极小Abel环;②设R为强左DS环,e2=e∈R为弱角幂等元,则eRe也是强左DS环;③R是强左极小Abel环当且仅当对每个e∈MEl(R),任意的a,b∈R,eab=eaeb;④强左极小Abel环的次直积也是强左极小Abel环;⑤R是强左DS环当且仅当对R的每个左极小元k,存在e∈MEl(R),使得Rk=l(1-e),l(k)=R(1-e);⑥R是左极小Abel环当且仅当对R的每个左极小元k,当k2=0时,对每个a∈R,总有Rk+R(ka-1)=R.  相似文献   

12.
拟Abel环   总被引:2,自引:0,他引:2  
设R是一个环,M是双R-模.若对每个e∈E(R),有eR(1-e)Me=eM(1-e)Re=0,则称M为拟Abel模,这里E(R)表示R的幂等元集合.若R-双模R是拟Abel的,则称R为拟Abel环.证明了如下结果:①R为拟Abel环当且仅当对任意的a∈N(R),e∈E(R),ea=0蕴涵eRae=0,这里N(R)表示R的幂零元集合;②R为Abel环当且仅当R为幂零自反环和拟Abel环;③设σ为环R的环自同态映射且满足条件: e∈E(R),σ(e)=e,则R为拟Abel环当且仅当R(σ)为拟Abel模.  相似文献   

13.
设R是包含非平凡幂等元且有单位元的素环, Q={T∈R: T2=0}且δ: R→R是一个映射(无可加假设). 用代数分解方法证明了: 如果对任意的A,B∈R且[A,B]B∈Q, 有δ(AB)=δ(A)B+Aδ(B), 则δ是一个可加导子, 其中[A,B]=AB-BA为Lie积.  相似文献   

14.
EIFP环     
给出EIFP环的定义,研究EIFP环的一些性质.主要证明了如下结果:①设R为EIFP环,则对每个e∈E(R),有eR(1-e)■J(R);②设R为quasi-normal环,e∈E(R),则R是EIFP环当且仅当eRe及(1-e)R(1-e)都是EIFP环;③R是Abel环当且仅当R是EIFP环和强左幂等自反环;④R是强正则环当且仅当R是von Neumann正则环和EIFP环;⑤R是约化环当且仅当R是n-正则环和EIFP环;⑥EIFP的exchange环有稳定域1.  相似文献   

15.
为了对左拟morphic环进行进一步研究,讨论了左拟morphic群环的性质,并主要给出了以下结论:如果群环RG是一个左拟morphic环,则R是左拟morphic环,G是局部有限群;若G是局部有限群,那么群环RG是左拟morphic环当且仅当对任意的x∈RG,存在G的有限子群H使得x在RH中是左拟morphic的;设...  相似文献   

16.
作为强J-clean环的推广,本文引入强J~#-clean环的概念,将强J-clean环的性质推广到强J~#-clean环上.设R为环,主要得到了:(1)a,b∈R.若ab是强J~#-clean元,则ba也是强J~#-clean元;(2)a∈R是强J~#-clean元当且仅当a是强clean元且a-a2∈J~#(R);(3)f2=f∈R,a∈fRf是R中的强J~#-clean元当且仅当a是环fRf中的强J~#-clean元.  相似文献   

17.
设R是包含非平凡幂等元且有单位元的素环, Q={T∈R: T2=0}且δ: R→R是一个映射(无可加假设). 用代数分解方法证明了: 如果对任意的A,B∈R且[A,B]B∈Q, 有δ(AB)=δ(A)B+Aδ(B), 则δ是一个可加导子, 其中[A,B]=AB-BA为Lie积.  相似文献   

18.
证明了一类环R上的可加映射δ满足对任意的S,T∈R且ST=P均成立δ(ST)=δ(S)。T+Sδ(T)当且仅当δ是一个Jordan导子,其中S。T=ST+TS为Jordan积,P为环R中的一个非平凡幂等元。  相似文献   

19.
设Bm×n是所有m×n布尔矩阵的集合,R(A)为A∈Bn的行空间,|R(A)|表示行空间R(A)的基数,m,n是正整数,k为非负整数.证明了如下3个结果:(1) 设A∈Bm×n,m,(ⅰ) 如果A是幂等矩阵,即A2=A,那么|R(Am)|=|R(A)| ;(ⅱ) 如果A是对合矩阵,即A2=I,那么当m是奇数时,|R(Am)|=|R(A)|,当m是偶数时|R(A)|=2n.(2) 设A∈Bm×n,A含1的元素个数为k,0≤k≤min{m,n},且A的每行每列元素中1的元素个数最多为1,那么|R(A)|=2k.(3) 若A∈Bm×n是形如A=(O OO A1)的分块矩阵,A1=(aij)k×k,aij=0(i>j),aij=1(i≤j),i,j=1,2,…,k,则|R(A)|=k+1.  相似文献   

20.
本文证明了如下定理:定理1 环R有左单位元,N为R的幂零集元合,(?)x,y∈R,若x≡y((?)od N)就导致x,y与N中元可换或x~k=y~k,x~(k+1)=y~(k+1),其中k=k(x,y)>2,则N为R的理想;且当R/N的每一子环都幂等时,R为交换环.定理2 环R有左单位元且为2-扭自由,N为R的暴零元集合.若V~x,y∈R,x≡y(mod N)就导致x,y与N中元可换或x~k=y~k,x~(k+1)=y~(k+1),k=k(x,y)>2;或x~2=y~2,则N为R的理想,且当R/N的每一子环幂等时,R为交换环.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号