首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 100 毫秒
1.
为实现静液传动履带车辆快速稳定转向,且转向轨迹可控,基于双侧轮边液压驱动结构特点,提出了转向时外侧马达排量采用压力、发动机转速双参数控制,内侧采用神经元自适应PID控制以跟随外侧的转向控制策略. 在Matlab/Simulink中建立了包含基于S函数的神经元PID控制器和综合控制策略Stateflow模块的整车模型,对转向控制进行仿真分析,阶跃输入时,神经元PID比传统PID控制能有效抑制系统超调量,加快系统响应速度;不同转向工况仿真结果表明:神经元PID控制具有较好的目标跟随能力,提高了系统的实时性和鲁棒性,使得静液传动履带车辆具有良好的转向性能.   相似文献   

2.
为了提高电传动履带车辆的原地转向性能,从履带车辆原地转向动力学模型出发,提出一种基于双电机力矩控制的电传动履带车辆原地转向控制策略,首先增大电机力矩初始值以提高转向响应速度,进而将方向盘转角信号引入横摆角速度负反馈增益从而实现驾驶员对转向速度的控制.使用D2P快速原型开发系统构建了履带车辆原地转向“驾驶员+控制器”在环仿真平台,通过实时仿真对所提出的控制算法进行了验证,结果表明设计的控制策略正确有效,且具有良好的实时性.  相似文献   

3.
针对履带车辆在行驶过程中,由于路面条件非线性变化导致的车速和转向角速度跟踪存在时滞和不稳定的问题,基于履带车辆转向运动学和动力学分析,提出了一种基于滑模变结构的转向控制方法,并将履带车辆的控制系统进行解耦,分别控制车速及转向角速度.采用积分滑模控制算法,设计了能够适应路面变化的车速控制器;引入模糊控制柔化控制信号,降低滑模抖振,并结合自适应调节设计了能够适应转向阻力非线性不确定的转向角速度控制器.运用MATLAB/Simulink软件对系统进行转向控制仿真分析,与传统比例-积分-微分(PID)控制相比较,车辆行驶速度与转向角速度跟踪响应速度分别提高了1.9 s和0.5 s,转向角速度跟踪精度提高了4%.仿真结果表明:所提出的算法具备响应速度快、抗扰动能力强的优点,能够实现履带车的稳定转向.  相似文献   

4.
双功率流履带车辆转向操纵液压系统设计   总被引:1,自引:2,他引:1  
液压机械双功率流转向是履带车辆的一种新型转向方式,能有效改善履带车辆的转向性能,转向操纵系统的设计是实现双功率流履带车辆平稳转向的关键问题之一。本文介绍了东方红1302R橡胶履带拖拉机的双功率流转向操纵液压系统的设计方案及工作原理,给出了主要液压元件的选取原则,并对其转向性能进行了初步计算,结:果表明该方案参数匹配合理,能较好的满足履带车辆的转向要求。  相似文献   

5.
履带中心距对履带车辆转向动态性能的影响分析   总被引:1,自引:0,他引:1  
针对履带车辆由直驶状态切换到转向状态的动态过程展开研究,分析了履带中心距对转向动态性能的影响,结合履带车辆最常见的独立式转向进行动力学分析和仿真,结果表明履带中心距对转向的动态响应时间有很大影响,中心距越大则转向响应时间越短,且两者基本呈线性关系.  相似文献   

6.
针对履带车辆转向时的直驶滚动阻力、转向离心阻力、直驶加速阻力、转向刮土阻力和转向加速阻力等对转向动态特性的影响,以良好路面(如水泥路、农村公路)上的中心转向、液压转向调速系统工作压力和其最高安全压力关系研究为基础,采用零差速式液压转向综合传动,合理匹配转向传动机构,得到了能够保障车辆应对各种转向工况时的工作压力.试验表明:工作压力为最高安全压力的60%~80%时,可保障车辆具有良好的动态转向稳定性.  相似文献   

7.
液压机械差速转向机构是结合了液压传动无级调速和机械传动高效率等优点的一种新型履带车辆转向机构。本文根据履带车辆的转向特点,对液压机械差速转向操纵系统组成及工作原理进行分析,建立转向操纵系统运动模型和仿真模型,仿真分析其动态特性。仿真结果表明,所设计的转向操纵系统具有良好的稳定性和动态特性,能满足履带车辆液压机械差速转向行驶要求。  相似文献   

8.
电传动履带车辆双侧驱动转速调节控制策略   总被引:7,自引:3,他引:4  
为解决双电机独立驱动电传动履带车辆行驶控制问题,建立以目标速度为输入的电传动履带车辆整车及驱动系统模型,设计了电传动履带车辆双侧驱动转速调节控制策略. 该控制策略由综合控制单元和两侧驱动电机控制器相互配合实现. 在Simulink/Stateflow中建立转速调节控制策略模型,完成以驾驶员操作为输入、包含控制环节的多工况系统仿真. 仿真结果和行驶试验验证了转速调节控制策略的可行性和有效性. 该控制策略已在车辆上成功应用.  相似文献   

9.
液压机械差速转向机构是履带车辆的一种新型双流传动机构,能实现履带车辆无级转向。基于液压机械差速转向机构工作原理,提出了一种双流传动履带车辆方向盘操纵系统方案。根据方向盘转角和液压先导阀杆摆角的变化关系,推导出了凸轮曲线的解析表达式。介绍了液压元件的结构及工作过程,仿真分析了方向盘操纵系统的工作稳定性及跟随特性。仿真结果表明:所设计的方向盘操纵系统能满足履带车辆液压机械差速转向行驶需要。  相似文献   

10.
对于同时装备主动稳定杆与主动前轮转向的车辆,为了获得最佳控制性能,建立仿真模型研究了双系统的耦合问题.建立非线性车辆动力学模型,并设计了主动转向比例积分微分控制器;基于稳定杆作动器,设计了主动侧倾滑模控制器以及反侧倾力矩前后轴分配模糊控制器;最后设置阶跃转向与双移线机动工况.仿真结果表明,主动转向可以一定程度改善侧倾性能;另一方面,反侧倾力矩分配与主动转向配合可以进一步提高车辆的横摆稳定性能,同时还可以保证侧倾稳定性能.  相似文献   

11.
越野环境下的松软地面是履带车辆行驶的主要地形,在这种条件下行驶不可避免地要进行斜坡转向操作,履带车辆的斜坡转向特性值得重点关注.针对研究履带车辆斜坡转向特性的必要性和重要性.根据履带车辆转向的运动特点,建立了坡道转向动力学模型,结合地面力学理论,进一步深入研究履带车辆在松软地面下斜坡转向特性.通过履带车辆在斜坡上完成规定半径转向动作所需的滑转率这一指标,来分析坡角、地面性质、转向半径对履带车辆斜坡转向性能影响,为履带式无人车的设计、路径规划和跟踪控制打下基础.  相似文献   

12.
静液驱动系统的液压闭锁能力研究   总被引:2,自引:0,他引:2  
研究由柱塞式变量泵和定量马达组成的静液驱动无级转向系统的液压闭锁能力.通过对转向系统液压闭锁能力的理论与试验分析,获得了系统液压闭锁能力与液压油粘度、泵输入转速、马达负荷转矩和马达机械效率等参数的关系.研究表明,合理匹配转向系统,利用静液驱动无级转向系统的自身闭锁能力可保证车辆直驶的稳定性.  相似文献   

13.
针对大型履带式液压凿岩台车原地转向能力展开研究。以车辆-地面力学理论、履带车多刚体建模理论为基础,在多体动力学软件Recur Dyn中构建了整车的动力学模型,分析了三种路面条件下履带式车辆的结构参数即履带接地长度与履带中心距比值L/B对转向能力的影响。仿真结果表明,结构参数L/B对履带式车辆的转向能力有很大影响;履带车辆在软地能够转向必须满足L/B小于1.7,且当L/B越小,履带车转向能力更好;对于在硬地转向,L/B越小,履带车辆转向稳定性更好。仿真结果与理论分析相符合,互为验证,研究工作对大型履带车辆行驶操控和结构优化设计提供了新思路。  相似文献   

14.
电传动履带车辆电子差速转向控制策略   总被引:5,自引:0,他引:5  
提出一种电传动履带车辆电子差速转向控制策略.构建了双感应电机驱动履带车辆电子差速控制系统;通过履带车辆运动学和动力学分析,提出基于无功功率感应电机模型参考自适应控制(MRAC)的电子差速转向控制策略;建立了感应电机间接磁场定向(IFOC)转速控制系统,设计了基于无功功率的感应电机MRAC控制模型,并进行了Popov超稳定性判稳分析.采用该策略进行了实车试验,不同速差行驶转向的结果表明,该策略可使车辆获得良好的差速转向性能.  相似文献   

15.
提出一种适用于履带车辆的双侧电机驱动系统匹配设计方法.针对不同路面直驶与转向中多个工况对内外侧履带的要求,获得单侧履带的动力需求特性.以最高车速与最大爬坡度为设计约束,参考现有电机参数,综合比较多种组合方案完成了电动机机械输出特性与两挡变速器的传动比匹配设计.性能校核与验算表明,匹配设计满足车辆性能指标要求,该方法已在该类车辆电驱动系统设计中成功应用.  相似文献   

16.
研究双感应电机驱动履带车辆转矩控制方法.通过建立感应电机数学模型,设计转矩PI电压调节器,提出了感应电机转子磁场定向转矩控制策略.建立了履带车辆双感应电机驱动系统,提出了双感应电机综合转矩控制策略.直驶和转向工况电机输出特性实验结果验证了该方法的可行性.  相似文献   

17.
一种高速开关阀控的油门伺服系统   总被引:5,自引:0,他引:5  
研究用于遥控履带车辆的高速开关阀控油门伺服系统.遥控履带车辆的车速性能指标由油门伺服系统控制油门开度实现.油门伺服系统的执行机构选用高速开关阀控液压油缸,由电控单元通过调节脉宽控制.对油缸的运动特性以及高速开关阀的开关性能进行分析,针对油缸运动的非对称性和高速开关阀的开启响应滞后的特点,设计了具有非对称控制参数和时间滞后补偿的静态积分PD控制器.实验结果表明油门伺服系统的性能优良,能够实现遥控履带车辆的车速控制要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号