首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
应用CFD流场数值计算程序对两类不同长叶片、两类不同长短叶片和一类超短叶片配置的离心泵进行数值模拟,讨论叶片数、分流叶片不同径向位置及周向位置对离心泵内流场及整机性能的影响.结果表明,选择合理的叶片数和分流叶片的径向及周向位置,可以有效降低长叶片的负荷,有效提高泵的扬程和效率,避免叶片数过多引起的叶轮进口堵塞和叶轮流道内发生回流和漩涡.当离心泵分流叶片进口直径为叶轮直径的0.68,分流叶片向长叶片背面偏置5°,叶片数为4个长叶片和4个超短叶片时,离心泵的整体性能最佳.  相似文献   

2.
轴流式血泵转速过高、离心式血泵易产生流动死区是造成血液损伤的重要原因,而混流式血泵能有效缓解转速过高及流动死区问题。基于此,采用计算流体力学方法对闭式叶轮混流式血泵进行了三维流场仿真,分别探究了不同叶片数和叶片厚度的混流式血泵的性能,分析了血泵流场特性及压力分布情况;基于溶血幂函数模型,通过拉格朗日粒子追踪法进行血泵的溶血性能预测,得到水力性能与溶血性能良好的血泵结构参数。结果表明,当叶片数为5、叶片厚度为0.8 mm时,扬程更接近预期设计目标,能够满足血泵供压需求;溶血指数比原模型降低14.65%,有效降低溶血程度;内部流场均匀稳定,未出现回流、流动死区问题,有效防止血栓产生;叶片进口处低压区域减少,有效缓解空化现象产生。研究结果可为闭式叶轮混流式血泵的结构改进及性能改善提供依据。  相似文献   

3.
叶片弯曲程度对离心压气机性能的影响   总被引:3,自引:0,他引:3  
采用离心压气机计算机辅助集成设计系统设计直叶片、正弯叶片和反弯叶片3种离心压气机叶轮.对具有不同弯曲程度的叶轮内部流场进行三维粘性计算,给出了不同弯曲程度的计算结果,比较了进口中间叶高处具有1.5 mm正弯和反弯叶形叶片压力面和吸力面上的熵分布.计算结果表明,进口正弯叶轮绝热效率略高于进口反弯叶轮的绝热效率;出口正弯和出口反弯叶轮绝热效率基本相同;叶形弯曲对小型离心压气机叶轮效率影响很小.  相似文献   

4.
采用离心压气机计算机辅助集成设计系统,设计了两个不同子午形面和叶片角的离心压气机叶轮.对这两个离心压气机叶轮内部流场进行了三维粘性计算,给出了计算结果.计算结果表明,在一定范围内,降低叶片轮缘-轮毂方向的负荷可以提高叶轮效率,后加载方式可以改善离心压气机叶轮性能.叶轮进口尺寸相同的情况下,子午形面和叶片角的变化对叶片负荷分布有较大影响.  相似文献   

5.
选择了叶轮叶片出口安放角、叶片进口冲角、叶轮出口宽度及导叶进口宽度这4个几何因素,按中心组合试验方法,设计了30组方案.通过FLUENT软件,对冲压井泵的全流场进行数值模拟,获得了额定工况下30组方案的效率.采用四元二次回归方程拟合四因素与效率值之间的函数关系,通过求解回归方程以寻求最优几何参数组合.利用DesignExpert6.0.5软件对回归模型进行分析,得到二次回归响应面图.由图中发现:在给定的范围内,叶轮出口宽度对效率的影响最为显著,表现为等值线最密;导叶进口宽度与叶轮叶片出口安放角次之;叶轮叶片进口冲角对效率的影响最小,表现不显著.通过样机试制及试验,发现在设计工况下采用两级全流场的数值模拟值与试验值相当接近,误差在2%以内,验证了数值模计算的可行性.  相似文献   

6.
在小流量工况下运行时离心泵叶轮进口会产生进口回流现象.采用标准κ-ε湍流模型,应用ANSYS CFX软件对不同工况下低比转速离心泵进口处的三维湍流场进行了数值模拟,分析了流场内的速度分布.为减小进口回流的危害,提出了在离心泵进口加注高压水的回流控制方案.对注入不同压力的高压水后,数值分析了进口流场的速度分布和回流漩涡的形态变化,并对比分析了回流控制效果以及离心泵扬程和效率.结果表明:在进口处注入高压水能有效改善回流发生时的流场速度分布,减弱回流强度,降低回流发生的关键流量点;但高压水的注入在设计流量和大流量范围内还会降低泵的扬程和效率;综合考虑各种因素后选择在该叶轮进口处注入0.10 MPa的高压水作为本模型泵的回流控制方案.  相似文献   

7.
为了研究叶片进口位置对船用离心泵内部流动和性能的影响。针对一国内生产的NSL125-415/A02型船用离心泵,在不改变原始叶轮设计的基础上,运用泵与旋转机械专业设计工具CFturbo分别将叶片进口边两次前移和两次后移,设计了四种新的叶型。然后采用全粘性三维湍流数学模型数值模拟计算了5组(包括原型泵)不同工况下的船用离心泵内流场,对比了不同位置叶片进口边对船用泵流量-扬程、流量-效率等外特性曲线以及叶轮内部流场在不同工况下的流动分布,并且将原型泵数值计算结果与试验进行了比对。结果表明:适当将叶片进口边位置向叶轮轮毂处偏移,可以相对改善叶轮内部流场分布情况,降低叶轮出口位置附近湍动能强度;在一定范围内,随着叶片进口边位置向轮毂处偏移,船用离心泵扬程有所提高,整体效率略有增加,且高效区域面积变大;通过与试验对比,运用数值计算方法来预测船用离心泵内部复杂三维流动是可行的。  相似文献   

8.
为了研究叶片进口位置对船用离心泵内部流动和性能的影响。针对一国内生产的NSL125-415/A02型船用离心泵,在不改变原始叶轮设计的基础上,运用泵与旋转机械专业设计工具CFturbo分别将叶片进口边两次前移和两次后移,设计了四种新的叶型。然后采用全黏性三维湍流数学模型数值模拟计算了5组(包括原型泵)不同工况下的船用离心泵内流场,对比了不同位置叶片进口边对船用泵流量-扬程、流量-效率等外特性曲线以及叶轮内部流场在不同工况下的流动分布,并且将原型泵数值计算结果与试验进行了比对。结果表明:适当将叶片进口边位置向叶轮轮毂处偏移,可以相对改善叶轮内部流场分布情况,降低叶轮出口位置附近湍动能强度;在一定范围内,随着叶片进口边位置向轮毂处偏移,船用离心泵扬程有所提高,整体效率略有增加,且高效区域面积变大;通过与试验对比,运用数值计算方法来预测船用离心泵内部复杂三维流动是可行的。  相似文献   

9.
变厚度叶片对离心压缩机结构强度和性能影响   总被引:1,自引:0,他引:1  
以国内某大流量离心式压缩机首级叶轮为研究对象,采用数值模拟方法研究了变厚度叶片对离心压缩机结构强度和性能的影响.应用CAD软件Solidworks对9种变厚度叶片的闭式叶轮进行三维实体造型,运用有限元软件ANSYS进行静态应力分析,并利用计算流体动力学软件CFX进行叶轮内部流场分析.重点比较分析了叶轮最大von Mis...  相似文献   

10.
为研究叶片进出口几何形状对离心叶轮内部流场及气动性能影响,以某离心叶轮为研究对象,对叶片进出口前、尾缘分别进行不同尺寸修圆处理,采用SST k-ω湍流模型与High Resolution数值方法进行周期性单流道数值模拟,研究了叶片不同尺寸进出口前、尾缘修圆产生的几何形状对离心叶轮内部流场分布和气动性能的影响。研究结果表明:叶片进口前缘平凸形修圆能够增加离心叶轮总压比和多变效率,减少气流在进口前缘局部流动分离损失;平凸形修圆尺寸越小,多变效率和总压比增加越明显,在设计工况点二者最大增加约1%;叶片尾缘压力面修圆能够增加离心叶轮的多变效率,但降低了离心叶轮的总压比,而尾缘吸力面修圆能达到同时增加离心叶轮多变效率和总压比的目的,使得设计工况下多变效率最大增加约1%,总压比最大增加约5%,且减少了气体流出叶轮时的尾迹损失。对叶片前缘小尺寸平凸形修圆和尾缘吸力面的大尺寸修圆,不仅能减少叶片进出口局部流动损失,而且能使设计工况点多变效率增加约1.5%,总压比增加约7%,从而提高离心叶轮的做功能力,为离心叶片设计优化和高效加工制造提供了参考。  相似文献   

11.
离心式水泵叶栅流动很复杂,必须采用试验与数据分析相结合的方法,才能真正有益于工程实践.本文主要介绍应用TSI二维激光多普勒测速仪探测离心式水泵叶栅流场,清晰地看到轴向涡旋对叶栅流动的影响,发现离心式泵叶栅出口处液流周向分速沿圆周变化不大.简单介绍了对试验水泵进行数据计算的结果.激光测速、流场显示以及三维数值分析结果都表明试验水泵叶片压力侧有严重的回流现象.  相似文献   

12.
为了研究预应力对便携式轴流泵叶片的应力及应变的影响,基于有限元理论,在Workbench平台上,采用ANSYS CFX软件对轴流泵内部流场和叶轮结构进行耦合求解.其中流场计算选用以雷诺平均方程为基础的SST k-ω湍流模型.结构计算采用弹性体结构动力学方程,对叶轮叶片在不同流量工况下的变形和应力分布以及各阶模态变化进行了计算.结果表明:在水体作用力和旋转离心力作用下,轴流泵叶片的最大变形发生在叶片进口轮缘处,且从轮毂到轮缘的径向方向上,变形程度逐渐变大;在叶轮压力面靠近轮毂附近区域出现应力集中,各工况最大应力值均远小于最大拉应力,能够满足强度要求;有无预应力对转子系统的各阶模态影响很小,且不同流量工况下各阶模态的变化也很小.  相似文献   

13.
采用加大设计流量的方法设计了一副3叶片低比转数离心泵叶轮,利用2DP IV系统测量设计转速时4种不同流量工况下同一叶槽内的流场,获得了叶槽内的瞬时流场图,进一步处理得到流场的速度矢量图和等值线图.测试结果表明,叶槽内部的流动呈非对称状态,在进口部位压力面存在局部低速区,可能产生回流.此项研究为改进叶轮设计方法提供了依据.  相似文献   

14.
为了提高小型前弯离心风机的气动性能,以汽车座椅通风用离心风机为研究对象,采用数值模拟与正交试验相结合的方法,研究叶片数、叶片出口角、叶片进口角以及叶片厚度对离心风机气动性能的影响. 基于小风量风机性能实验台,验证数值模拟结果的正确性. 选取三水平正交表L9(34)进行此次试验,建立了9种不同参数组合下的叶轮模型,以最大静压为优化目标,采用计算流体动力学方法,得到了最佳离心风机参数组合. 对优化前、后离心风机内部流场的压力与速度分布进行了对比分析. 由正交试验结果分析可知,各参数对离心风机最大静压影响的主次顺序为叶片出口角、叶片进口角、叶片数和叶片厚度;达到最大静压的参数组合为:叶片数55,叶片进口角95°,叶片出口角125°,叶片厚度0.8 mm. 优化后离心风机的无因次特性曲线优于原有风机,在高效率区域静压可提高3.78%~10.67%,具有更好的气动性能. 对比优化前、后离心风机内部流场的压力与速度分布可知,优化后的离心风机内部流场分布更加均匀,在叶轮进口处低压区的压力更低,速度更大,更有利于气流的进入.  相似文献   

15.
对叶轮进口附近流动在偏离设计工况下的回流和汽蚀(空化)两大特性进行了系统的描述,阐述了它们的诱发机理及其对泵性能的影响.根据回流的诱发机理对诱导轮的作用进行了全面的分析,提出了控制回流发生的有效方法,从叶片进口流动这一角度完善了离心泵叶片设计理论.  相似文献   

16.
低比转速离心叶轮圆柱形叶片的三维建模方法   总被引:3,自引:2,他引:1  
针对离心叶轮圆柱形叶片几何形状一般比较复杂,三维建模具有一定难度的情况,基于离心叶轮圆柱形叶片结构的特点,采用数学分析法求解三维圆柱形叶片表面控制节点的位置,为快速准确地建立叶片三维模型提供理论依据.通过实例详细介绍圆柱形叶片三维建模的过程和方法,针对传统水力设计中无法考察叶片进口边安放角的分布规律及光滑性,提出叶片进口边建模及修正其形态的方法.依据该方法可以直观考察和修正叶片进口形态,改进和提升叶轮水力和空化性能,也为叶轮流场的CFD模拟和数控加工奠定理论基础.  相似文献   

17.
基于国内某抽水蓄能电站建立的水力模型并结合该模型试验报告,采用SSTk-ω模型计算带分流叶片水泵水轮机7.5°导叶开度下零流量工况附近的制动工况和反水泵工况,进行定常和非定常数值模拟,研究其内部流场压力分布、速度流线分布及径向力分布规律.结果表明:计算流体动力学数值计算可以很好地模拟分析带分流叶片水泵水轮机的内部流场特性;制动工况下的流态很差,涡结构充满整个流道引起水流拥堵且成不对称分布;反水泵工况导叶和转轮出现了严重的流动分离,水流在叶片中上游发生冲击;分流叶片的存在减小了负压区域,降低了汽蚀现象发生的可能性,有助于水轮机内部水流流动更加平稳;带分流叶片水泵水轮机的径向力在一个周期内的变化规律与转轮叶片数强关联,峰谷值个数与叶片数相对应.  相似文献   

18.
提出了用正反问题迭代法设计混流泵叶轮的新方法。该方法能够有效地弥补传统方法设计叶片时轴面流动的计算仅满足流体连续方程的缺陷,同时考虑了叶片形状对轴面流场计算的影响。通过两类相对流面迭代求解流体连续方程与运动方程,完成设计叶轮的正问题计算。采用逐点积分法进行叶片骨线绘型,在轴面上加厚叶片,在保角变换平面内修圆叶片头尾部,完成反问题设计。正反问题迭代计算直至收敛,最终完成混流泵叶轮的设计。采用SIMPLEC算法,通过求解Navier-Stokes方程和RNGk-ε湍流模型方程,模拟了混流泵叶轮内的三维流场,获得了叶轮内的速度与压力分布。结果表明:正反问题迭代方法设计的叶片对于水流的控制能力增强,叶轮内部流动稳定,压力分布均匀,具有更优的水力性能。  相似文献   

19.
为研究叶片进口几何形状对核主泵水力性能以及空化性能的影响,基于连续性方程、雷诺时均N-S方程和RNG k-ε湍流模型,对4种不同叶片进口几何形状的核主泵模型泵进行全流场空化模拟,得出不同叶片进口几何形状对核主泵外特性以及空化性能的影响规律.结果表明:叶片进口边减薄,使叶片进口对流体的排挤作用减弱,改善了叶片对进口流动条件改变的适应性,减小了叶片进口处的流动损失,提高了效率.另外,增大叶片进口边圆角,进口减薄程度加剧,使进口处过流断面面积增大,流速降低,进而导致压力增大,且低压区逐渐向叶片出口移动,在发生空化时,气泡对叶片进口相对流动角影响逐渐变小.同时,随着叶片进口减薄程度的加剧,叶片进口更加接近流线型,液体绕流叶片头部时产生冲击减小,使叶片吸力面前盖板处最低压力有所增大.  相似文献   

20.
建立了固体颗粒和空泡在不可压缩流体任意流场中运动的Lagrangian模型,考虑了浓度等因素对固体颗粒和空泡运动的影响,给出了计算固体颗粒和空泡的数值方法,并模拟了一水泵叶轮中的固体颗粒和空泡运动,得出了水泵叶轮流场中固体颗粒和空泡的运动特性,为分析水力机械的磨损提供了可行的数值模拟方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号