首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
考虑n維微分方程组: dx_s/dt=X_s(t;x_1,…,x_n) (s=1,2,…,n) (1)其中,函数X_s(t;x_1,…,x_n)是在区域(H): t≥to≥o,sum from s=1 to m x_s~2≤H,X_(m+1),…,X_n为任意实数 (H)上定义的变元t,x_1,…,x_n的实連續函数,(其中1≤m≤n,H>o为常数),并且可以展为变元x_1,…,x_n的幂級数,其所有的系数,当t≥to时有界且連續;此外設X_s(t;  相似文献   

2.
本文分有限组和可数组两部分敍述。Ⅰ.有限组解的稳定性这一部分利用O.Perron不等式的推广讨论方程组解的稳定性问题设方程组 dx_o/dt=a_o(t)x_o, dx_y/dt=a_v(t)x_v+∑b_vj(t)x_j+f_v(t,x_1,…,x_n),v=1,…,n,j=1 这里f_v(t,x_1,…,x_n)是t和x_v(t≥0.|x_v|<+∞)的函数,并且满足n |f_v(t,x_1,…,x_n)|≤gv(t)∑|x_j|,v=1,…,n,j=1  相似文献   

3.
考虑下列微分方程组其中p_(ij)(t)(i,j=1,2,…,n)为t≥t。的实连函数,f_i(i=1,2,…,n)为变量t,X_1,…X_n的实連續函数,定义于区域:t≥t。,|x_1|相似文献   

4.
本文在一定条件下将李雅普诺夫稳定性及不稳定性定理作了推广。对于非自治系统 (dx_s)/(dt)=X_s(t,x_1,…,x_n)(s=1,…,n)(2.1)若可以求得一个定正函数V(t,x_1,…x_n)而通过(2.1)计算得的全导数具有形式 (dV)/(dt)=λ(t)U(t,x_1,…,x_n)+(?)(t,x_1,…,x_n)其中 1°当t≥t_0时,积分integral from t_0 to t λ(t)dt为有上界M的函数。 2°U(t,x_1,…,x_n)为定正函数,且U≤V~k(K≥1为常数) 3°(?)是常负函数或铲(?)≡0则非自治系统(2.1)的零解为稳定。 此时,(dV)/(dt)可以是变号的也可以是常正的,系统(2.1)的零解仍是稳定的。进而得到了一个关于非自治系统(2.1)的零解为稳定和渐近稳定的充要条件。  相似文献   

5.
§1.引言对微分方程组 dx_i/dt=P_(ij)(t)x_j+Ψ_1(t,x_1,x_2,……x_n)(1.1) 本文总假定函数P_(ij)(t)在区域t≥0上是连续有界的,并函数Ψ_1(t,x_1,……x_n)在区域; t≥0,-∞相似文献   

6.
本文将许淞庆编著的《常微分方程稳定性理论》第68页命题3“如果对于扰动微分方程:(dx_s)/dt=x_(?)(t;x_1,x_2,…,x_n),(s=1,…,n)(1)存在着函数V(t;x_1,…,x_n),使得函数V—Q(t)W (θ(t_0)=1)是常正的,其中W=W(x_1,…,x_n)为定正函数,且θ(t)为t的单调增函数,并有Q(t)=∞,由方程(1)计得(dv)/(dt)为常负式恒为零,则未被扰动运动渐近稳定”加以推广,得到了一个更广泛条件下的结论——  相似文献   

7.
在亚贝尔群上得到函数方程f_3(x_1+x_2+x_3)-[f_(21)(x_1+x_2)+f_(22)(x_1+x_2)+f_(23)(x_2+x_3)]+f_(11)(x_1)+f_(12)(x_2)_f_(13)(x_3)=0和f(x_1+x_2+…+x_n)-sum from i=1 to (n-1)sum from j=2 to n f_(ij)(x_i+x_j)+sum from i=1 to n f_i(x_i)=0的一般解。  相似文献   

8.
本文对部分变元考察微分方程的零解的稳定性.建立四个关于部分变元的稳定性,渐近稳定性和全局渐近稳定性的定理.§1.基本定义考虑扰动运动微分方程组(?)x_i=X_i(t,x_1,…,x_n)(i=1,…,n)或写成向量形式(?)=X(t,x),X(t,0)≡0 (1)我们研究未被扰动运动x=0关于部分变元x_1,…,x_m(m>0,n=m p,p≥0)的稳定性问题.为简单起见,记y_i=x_i(i=1,…,m),z_j=x_(? j)(j=1,…,n-m=p),即x=(y_1,…,  相似文献   

9.
本文証明了下面的定理1,并应用置換群給出Karamata不等式,Muirhead不等式的一种新的証明。設x=(x_1,x_2,…,x_n)为n維空間中的点。G为集合{1,2,…,n}上的n元置換群。G的元素用ρ、σ、τ、等表示,ρ∈G,ρx=(x(ρ1),x_(ρ2),…x_(ρn),其中ρ_k=ρ(k)。记x的G軌道为Gx,Gx的凸包为H(Gx)。定理1.設φ_1、φ_2、…、φ_n、为R→R的連續、凸函数,如果  相似文献   

10.
(一) 研究直接调节系统(dx)/(dt)=Ax Bf(σ) (σ=d~rx) (1)其中x是n维列向量;σ是m维列向量;A是特征值全具负实部的n阶方阵;B和d是n×m阶矩阵;f(σ)是m维列向量,它的第j个座标f_j(σ_j)只依赖于向量σ的第j个座标σ_j,即f(σ_j)=f_j(σ_j),并且它是满足条件f_j(0)=0,σ_jf_j(σ_j)>0(σ_j≠0)(j=1,…,m)(2)的连续函数。  相似文献   

11.
定义了与函数相关的Vandermonde行列式,从而得到了多重积分∫_Eφ~(n)(∑_(i=0)~na_ix_i)dx_1dx_2…dx_n的一般计算公式,其中E={(x_1,x_2,…,x_n)|∑_(i=1)~na_ix_i≤1,x_i≥0,i=1,2,…,n},x_0=1-∑_(i=1)~nx_i,并给出了若干特例。  相似文献   

12.
这里x=col.(x_1,x_2,…,x_n),A(t)是t的一致概周期(一致Π.Π.)n阶方阵,f(t)是t的一致Π.Π.n维列向量函数,‖x‖=sum from i=1 to n |x_i|,A(t)=(α_(ij)(t)),‖A(t)‖=sum from i+j=1 to n|α(ij)(t)|或欧氏模。 从文[1]知,对于周期线性系统情形:A(t+T)=A(t),f(t+T)=f(t),T>0,系统(1)有T-周  相似文献   

13.
根据Vandermonde行列式的函数属性,利用多元函数的微分法,可以推导出关于它的两个恒等式。 对于n阶Vandermonde行列式设D_1(x_1,x_2,…x_n)表示函数D(x_1,x_2,…x_n)对x_j(j=1,2,…,n)的偏导数,则由行列式的一般定义及多元函数的微分法则,易知  相似文献   

14.
在这个注记中,建立了线性微分方程组零解为不稳定的条件,它特别简便,其次还建立了线性微分方程组零解为渐近稳定的一个必要条件,由此条件就可断言文[1]中有两个推论是错误的.设给定线性微分方程组(dx_s)/(dt)=a_(s1)(t)x_1+…+a_(sn)(t)x_n,s=1,…,n, (1)或表为矩阵形式(dx)/(dt0=A(t)x, (1′)其中 a_(sj)(t)(s·j=1,…,n)对一切 t≥t_0≥0为连续函数;又设  相似文献   

15.
一、引言 设给定x_i i=1,2…m,x_i∈[a,b]及此m个点上数据资料f_i i=1,2,…,m,寻求一函数φ(x)=sum from j=1 to n (α_jφ_j(x)),使sum from i=1 to m(ω(x_i)r_i~2)=sum from i=1 to m(ω(x_i))(f_i-(x)=sum from j=1 to n (α_jφ_j(x_i))~2达到最小,此即是带权ω(x)的线性最小二乘问题,其中ω(x)在[a,b]上定义,α_j是拟合系数,n是拟合阶数。  相似文献   

16.
设ρ(x,α)是R~n上具C~∞系数的线性偏微分算子。关于伸缩群{δ_τ}_(τ>0)是m次拟齐性的。其中δ_τ:R~n→R~n,δ_τ(x_1,…,x_n)=(τ~(a_1)(x_1),…τ~(a_n)(x_n),x=(x_1,…x_n)∈R~n,τ>0,a_1,…a_n为给定正数。设S为R″上的Schwartz空间,给定f∈S,考虑方程 pu=f,u∈S (1) 定理1 S中存在一个属于第二纲集的子集F,对于每个/∈F,方程(1)无解。定理2 (1)若m>0,则方程(1)有解的必要条件为:对于每个满足sum from j=1 to n(α_jα_j相似文献   

17.
约定 A(≥0)>0为(半)正定 Hermite 矩阵。如果复矩阵 A=(a_(ij))(∈C~(n×n))的特征值都是实数,规定其特征值满足λ_1(A)≥…≥λ_n(A),用σ_1(A)≥…≥σ_n(A)表示 A 的n 个奇异值,规定{δ_1(A),…,δ_n(A)}与{a_(11),……,a_(nn)}为同一集合且|δ_1(A)≥…≥|δ_n(A)|。当实向量 x=(x_1,…,x_n)与 y=(y_1,…,y_n)的分量按递减顺序排列为 x_[1]≥…≥X_[n]与 y_[1]≥…≥y_[n]时,若(?)X_(i)≤(?)y_[i],k=1,2,…,n,则称 y 弱控制 x,记为 x相似文献   

18.
在常微分方程的高阶方程求解过程中,为判断一解能否为其通解,常需讨论一组解函数的线性相关性.函数组的线性相关性是这样定义的:定义:设函数x_1(t),x_2(t),…x_n(t)是定义在区间〔a,b〕上,如果存在不全为零的常数λ_1,λ_2,…λ_n,使得(?)t∈〔a,b〕有:λ_1x_1(t) λ_2x_2(t) … λ_nx_n(t)=0则称x_1(t),x_2(t),…x_(t)在区间〔a,b〕上线性相关;否则,就称它们在〔a,b〕上线性无关.  相似文献   

19.
若xj(j=1 ,2 ,… ,n)是n次方程a_nx~n+a_(n -1) x~(n -1) +… +a_1 x +a_0 =0的n个根 ,将给出一种求这n个根x_1 ,x_2 ,… ,x_n 的k次方之和sum from i=1 to n(x_i~k)的新方法。  相似文献   

20.
O.Perron曾经证明了这样一个定理:若复数域上的线性齐次微分方程组:y_ i(t)=sum from to (n j=1) f_(ij)(t)y_j(t),0≤t<∞,i=1,…,n,(0)满足:(ⅰ)当i≠j时lim f_(ij)(t)=0;t→∞(ⅱ)存在正数C及t。使R_e[f_(j-1,j-1)(t)-f_(jj)(t)]≥C对t≥t。及2≤j≤n成立,那末,方程组(0)的解的第j个特征数λ_j=■ 1/t integral from n=0 to t(Re f_(jj)(τ)dτ,j=1,…,n.)关于这个定理,某些微分方程方面的著作给出了详细的介绍,例如[1.pp.132-146],[2.pp.187-193],等等。本文则推广了这个定理,取消了上述两个对f_(ij)(t)的较为严格的限制条件而代之以一些较为宽容的条件。按照本文的结论,我们(ⅰ)不必要求t-∞时f_(ij)(t)→0,甚至不必要求f_(ij)(t)有界;(ⅱ)不必要求Re[f_(j-1,j-1)(t)-f_(jj)(t)]≥C对某一正数C及t≥t_o成立,甚至不必要求Re[f_(j-1,j-1)(t)-f_(jj)(t)]≥0在t≥t_o之后永远成立,但我们最后仍能根据系数矩阵(f_(ij)(t))给出方程组(0)的特征数的估计式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号