首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为丰富Fe_3O_4磁性纳米粒子在生物医学领域的应用,通过共沉淀法制备Fe_3O_4纳米粒子,经柠檬酸三钠修饰后,采用改进的Stber法成功在Fe_3O_4纳米粒子表面包覆上SiO_2,制备出核壳结构Fe_3O_4@SiO_2纳米粒子。使用扫描式电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪、振动样品磁强计对制备的Fe_3O_4@SiO_2纳米粒子进行表征。结果表明:制备的Fe_3O_4@SiO_2纳米粒子较Fe_3O_4纳米粒子分散性有明显的提高,平均粒径在65 nm左右,饱和比磁化强度为10.26 A·m^2/kg,仍具有良好的超顺磁性。  相似文献   

2.
以氯铂酸为氧化剂、Fe_3O_4纳米粒子为载体、血红蛋白(Hb)为模型蛋白,利用多巴胺(DA)氧化聚合生成聚多巴胺(PDA),同时氯铂酸还原为铂纳米粒子(Pt NPs)的性质,一步法合成了Fe_3O_4/PDA-Pt NPs-Hb复合磁性纳米粒子。将Fe_3O_4/PDA-Pt NPs-Hb固定于磁性玻碳基底表面制得Fe_3O_4/PDA-Pt NPs-Hb/MGC电极。对固定在Fe_3O_4/PDA-Pt NPs-Hb复合磁性纳米粒子中的Hb在电极上的直接电化学行为进行了研究,结果表明Fe_3O_4/PDA-Pt NPs-Hb复合磁性纳米粒子不仅能简便地固定在电极表面,而且能有效地促进Hb与电极表面的直接电子转移。此外,Fe_3O_4/PDA-Pt NPs-Hb/MGC电极对H_2O_2有很好的电催化活性,在6.6~72.6μM范围内具有良好的线性响应,检测限达3.92μM(S/N=3)。  相似文献   

3.
为探究Fe_3O_4类磁性纳米粒子磁性能的优劣,采用水热合成法,将相同摩尔比例的Co、Nd、Ce、La和Ni掺杂到Fe_3O_4中,形成具有通式MFe_2O_4的磁性纳米粒子。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱(EDS)、动态激光散射粒径(DSL)和振动样品磁强(VSM)测试,分析了纳米粒子的结构、形貌、元素组成、粒径以及磁性能。结果表明,水热合成法可成功地将Co、Nd、Ce、La和Ni掺杂到Fe_3O_4主晶当中,形成圆形结构纳米粒子,粒子分散性好。其中,CoFe_2O_4的粒径最大,结晶能力最强,使得其具有较高的饱和磁化强度和极高的矫顽力,因此硬磁性能好。3组稀土(Nd、Ce和La)掺杂的纳米粒子中,NdFe_2O_4的粒径最小,同时较高的饱和磁化强度和极低的矫顽力使其具备优异的软磁材料性能。  相似文献   

4.
在过去的几十年间,纳米粒子在生物医学领域取得了飞速发展.在众多类型的纳米粒子中,磁性四氧化三铁(Fe_3O_4)纳米粒子又以其大比表面积、低毒性和良好的生物相容性等物理化学性质而得到全世界生物医用领域的广泛关注.配合以表面修饰手段以及相应的体内作用机制,磁性四氧化三铁(Fe_3O_4)纳米粒子展现出巨大的应用价值,已成为在生物医学材料领域应用最为成功的磁性纳米粒子之一.文中概述了Fe_3O_4纳米粒子作为诊断试剂、药物载体以及诊疗一体化试剂的研究进展,并对该领域的未来发展进行展望.  相似文献   

5.
以共沉淀法制备得到了Fe_3O_4磁性纳米粒子,以溶胶-凝胶法得到了包裹罗丹明6G的氨基硅烷修饰的荧光磁性复合纳米粒子(Fe_3O_4/R6G)@SiO_2-APTES,以动态光散射法(DLS)测定了复合纳米粒子的水合粒径,以IR光谱、荧光光谱等手段对得到的复合纳米粒子进行了表征,并以琼脂糖凝胶电泳研究了(Fe_3O_4/R6G)@SiO_2-APTES对DNA的损伤行为。研究结果表明这类氨基硅烷修饰的荧光磁性复合纳米粒子在水中具有很好的分散性和稳定性,且有良好的生物相容性,有望成为一种新的抗癌药物载体。  相似文献   

6.
首先以共沉淀法制备了磁性纳米颗粒Fe_3O_4并在表面包覆SiO_2,制得Fe_3O_4@SiO_2磁性纳米颗粒.然后由PBLG水解制得PGA为共聚组分,过硫酸铵为引发剂,EGDMA为交联剂,使用自由基共聚制备交联共聚物,同时加入Fe_3O_4@SiO_2纳米颗粒,制备得到Fe_3O_4@SiO_2@PGA磁性纳米粒子.通过核磁(~1H-NMR),红外(FT-IR),X-射线衍射(XRD),动态光散射(DLS)和透射电镜(TEM)等一系列手段对磁性纳米粒子的结构和形貌进行了表征,初步证明了制备的样品具有稳定的结构和良好的磁性.  相似文献   

7.
导向药物用纳米Fe3O4磁性粒子的制备及表征   总被引:4,自引:0,他引:4  
采用化学共沉淀法先生成Fe3O4微粒,再将其分散于含有表面活性剂的水中的方法制备了纳米级Fe3O4磁性粒子.通过双层表面活性剂包覆可使Fe3O4磁性粒子稳定分散于水中而不聚集.在反应溶液pH值为11~12,温度为60℃及油酸钠为第1层表面活性剂,十二烷基苯磺酸钠为第2层表面活性剂的条件下制备了粒径为36nm的Fe3O4磁性粒子.实验结果表明:反应溶液pH值和表面活性剂是影响Fe3O4磁性粒子稳定性、粒径和饱和磁化强度的主要因素;利用XRD和IR证实了Fe3O4磁性粒子中存在Fe3O4和表面活性剂结构.所制备的纳米级Fe3O4磁性粒子可用作导向药物的磁载体.  相似文献   

8.
叙述了以Fe、Fe_3O_4为基体材料、油酸等为活性剂,烃类化合物为载流体合成铁磁流体的实验结果.研究表明:在最佳条件下合成的铁磁流体,饱和磁化强度远高于单纯以Fe_3O_4为基体材料的传统磁流体,从而为研制高性能的新型磁流体提供了一种途径。  相似文献   

9.
采用水热法快速制备Fe_3O_4纳米粒子,并通过表面氨基化与金纳米粒子自组装构建金磁微粒(Fe_3O_4@Au).表征Fe_3O_4@Au理化性质,并优化Fe_3O_4@Au对牛血清蛋白的固定体系.实验结果表明,所制备的金纳米粒子平均粒径达到(7.8±0.4)nm,氨基化的磁性材料可以固载金纳米粒子,金磁微粒饱和磁化强度为61 emu/g;金磁微粒对牛血清蛋白的固定化体系为金磁微粒添加量0.1 g,固定化温度50℃,固定化时间10 min,且平均固定量为5.189 mg/g.  相似文献   

10.
采用水热法,以柠檬酸(Cit)为配位剂,使之与溶液中的亚铁离子形成配合物,通过改变水热反应时间合成出具有不同形貌和高饱和磁化强度的Fe_3O_4磁性粉体,以研究水热反应时间对合成Fe_3O_4磁性颗粒形貌及其磁性能的影响,从而确定最佳合成工艺.XRD衍射谱图分析结果表明柠檬酸配位体系水热合成产物为具有高纯度的面心立方结构的Fe_3O_4粉末;SEM图分析结果表明,随着反应时间的增加,Fe_3O_4的形状由正八面体消失,并先择优取向横向生长成纳米片结构,随后逐渐趋向于纵向生长,使片状生长为块状,最终生长为不规则的多面体结构.FT-IR分析结果表明,在柠檬酸体系合成Fe_3O_4的过程中,柠檬酸分子在合成的Fe_3O_4颗粒表面以配位状态存在.磁滞曲线分析结果表明,合成的Fe_3O_4样品具有超顺磁性,且当水热反应时间为14 h时,合成的Fe_3O_4粉体在300 K条件下饱和磁化强度高达97 emu/g,相比目前文献报道的最高的块状结构Fe_3O_4颗粒饱和磁化强度提高7.78%.  相似文献   

11.
在阳离子表面活性剂(CTAB)胶束体系中制备立方相Co_3O_4磁性纳米粒子,将其与制备原液的混合体系分散到阴离子表面活性剂十二烷基苯磺酸钠(SDBS)溶液中,再加入苯乙烯引发聚合,制得聚苯乙烯/Co_3O_4复合纳米粒子.TEM观察Co_3O_4纳米粒子的平均粒径为30 nm左右,复合纳米粒子的粒径为40 nm左右.XRD、IR谱图及热、磁性能测定表明聚苯乙烯对Co_3O_4纳米粒子的包裹是成功的.  相似文献   

12.
采用蒸发酸纯化多壁碳纳米管(MWCNTs),共沉淀法制备Fe_3O_4/MWCNTs磁性复合材料.通过傅里叶红外光谱(FTIR)、透射电镜(TEM)、X射线衍射(XRD)、X射线光电子能谱分析(XPS)和磁性能检测(VSM)对合成的Fe_3O_4/MWCNTs磁性复合材料组成、结构、形貌、性能等进行表征,并对溶液中的Pb~(2+)进行吸附研究.结果表明:Fe_3O_4纳米颗粒成功嫁接到多壁碳纳米管的表面;Fe_3O_4/MWCNTs磁性复合材料具有超顺磁性,饱和磁化强度为50.10A·m~(-2)/kg,剩磁和矫顽力为0,可通过磁铁将Fe_3O_4/MWCNTs磁性复合材料从溶液中分离出来;Fe_3O_4/MWCNTs磁性复合材料吸附溶液中的Pb~(2+),开始的15min内吸附量达到43.57mg/g,6h后吸附达到平衡,平衡吸附量为50.28mg/g.  相似文献   

13.
提出一种采用共沉淀法制备三维多孔Fe_3O_4纳米花的合成方法,对Fe_3O_4纳米花的自组装演化过程进行了研究.结果发现,尿素浓度是影响Fe_3O_4前驱体形貌的关键因素,通过调节制备条件可以获得具有纳米花形貌的Fe_3O_4纳米颗粒,Fe_3O_4纳米花作为磁性多孔微球具有更高的比表面积.磁性测试结果表明,Fe_3O_4纳米花在室温下具有超顺磁性且具有较高的饱和磁化强度.该材料是一种具有较好应用前景的磁性纳米材料.  相似文献   

14.
通过水热法制备Fe_3O_4磁性纳米微球,以此为核包覆TiO_2,并将核壳结构的TiO_2/Fe_3O_4附着在还原氧化石墨烯(RGO)片层结构上;利用扫描电镜(SEM)、透射电镜(TEM)、N2吸附-脱附、X射线衍射仪(XRD)、震动样品磁强计(VSM)和X射线光电子能谱(XPS)表征了RGO/TiO_2/Fe_3O_4磁性复合纳米材料的形态结构、包覆情况、磁性和元素种类,同时考察了该催化剂在紫外光照射下催化脱色甲基橙的效果。实验结果表明,TiO_2均匀地包覆在Fe_3O_4表面,RGO/TiO_2/Fe_3O_4磁性复合纳米材料的比饱和磁化强度为19.0emu/g。以甲基橙的水溶液为模拟污染物,紫外光照射90min后RGO/TiO_2/Fe_3O_4复合纳米材料对甲基橙的脱色率达到91%。  相似文献   

15.
实验研究了不同体积分数Fe_3O_4/Water纳米流体在磁场作用下的水平小圆管内的湍流流动对流换热特性,测量了体积分数为3%的Fe_3O_4/Water纳米流体的沿程压力降并计算了其能量比率,探讨了在磁场作用下纳米流体强化对流换热的机制.实验结果表明:Fe_3O_4/Water纳米流体的对流换热系数随着体积分数的增加而升高,其平均值最大提高了4.3%;在与流动方向垂直的匀强磁场作用下,当磁场强度为23.809和39.682 kA/m时,纳米流体的换热系数几乎没有提高,当磁场强度为63.492 A/m时,换热系数有所提高,其平均值最大提高了3%;Fe_3O_4/Water纳米流体的沿程压力降相对于基液去离子水增加了50%,外加磁场使其进一步增大,并随着磁场强度的增加而增大,当磁场强度为63.492 A/m时增加了11.3%;Fe_3O_4/Water纳米流体相对于基液去离子水的能量比率计算值小于1,说明添加Fe_3O_4纳米粒子没有达到节能的效果.  相似文献   

16.
采用简单的油浴法制备出磁性Fe_3O_4/In_2S_3可见光催化剂,利用XRD、SEM、FTIR、BET、UV-Vis DRS以及磁滞回线等手段对其进行表征,以可见光(λ≥420 nm)为光源,以罗丹明B的光催化降解为模型反应,考察不同Fe_3O_4/In_2S_3复合比的磁性Fe_3O_4/In_2S_3可见光催化剂的催化性能及循环使用性能.结果表明,当物质的量n(Fe_3O_4)与n(In_2S_3)之比为6∶5时制备的磁性Fe_3O_4/In_2S_3可见光催化剂具有最好的光催化活性.光照90 min后,罗丹明B的降解率高达96%;磁性Fe_3O_4/In_2S_3可见光催化剂的饱和磁化强度达10.31 A·m2·kg-1,在外加磁场作用下,5 s内可以快速从水相中分离,具有良好的磁分离效果;样品经3次循环使用后其催化活性基本保持不变.  相似文献   

17.
Fe3O4磁纳米粒子的炔基修饰包括:纳米磁性Fe3O4粒子的制备,硅胶包覆Fe3O4磁粒子,氨基修饰硅胶包覆的磁粒子,炔基修饰氨基修饰后的磁粒子.并采用苄基叠氮与所制备的炔基修饰磁Fe3O4纳米粒子进行click环加成反应.通过SEM、BET、XRD和VSM分别对Fe3O4和硅胶包覆Fe3O4的表面形貌、比表面积、晶型结构和磁性能进行表征;利用UV-Vis对磁性Fe3O4粒子表面的炔基进行半定量分析;采用FTIR对产物表面基团做定性分析.结果表明,Fe3O4磁纳米粒子平均粒径为180±20 nm,粒子呈球  相似文献   

18.
采用纳米微乳液法,以乙酰丙酮铁(Fe(acac)_3)、醋酸铑([Rh(OOCCH_3)_2]_2)为前驱体,1,2-十六烷二醇为还原剂,正辛醚为溶剂,三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯(PEO-PPO-PEO)为表面活性剂成功合成了双相可分散的RhFe3O4纳米复合粒子.傅立叶变换红外光谱仪(FT-IR)分析表明该纳米复合粒子表面存在两亲性PEO-PPO-PEO分子,X-射线衍射仪(XRD)分析表明纳米复合物中含有Rh和Fe_3O_4,透射电子显微镜(TEM)测试表明该纳米复合粒子基本呈球形或多面体形、粒径分布窄、结晶度高,振动样品磁强计(VSM)测试表明该纳米复合粒子在室温下显示软铁磁性.RhFe_3O_4纳米复合粒子在水和正己烷中的分散-聚集过程,表明其具有良好的双相分散性和磁操控性.兼具良好催化活性和磁性的RhFe_3O_4纳米复合粒子有望在催化、生物医药中有潜在的应用.  相似文献   

19.
水溶性磁性Fe_3O_4纳米颗粒由于其良好的生物相容性、超顺磁性等特征,在生物领域常被用来作为磁性载体材料,其广泛的生产和应用增加了它们在环境中释放的可能性,需对其环境生物安全性进行评价.首先合成了水溶性磁性Fe_3O_4纳米纳米粒子,并用透射电子显微镜和马尔文粒度分析仪对其进行形貌分析和表征.然后在不同的浓度下(0、0.72、1.44、3.6 mg/mL)研究了水溶性磁性Fe_3O_4纳米粒子对小麦生长的影响,结果显示随着浓度的增加,磁性Fe_3O_4纳米纳米粒子对小麦生长的抑制越明显,造成生长抑制和根结构损伤.结果证明了水溶性磁性Fe_3O_4纳米颗粒对小麦植物存在一定的生物毒性,其环境排放应该严格限制.  相似文献   

20.
四氧化三铁(Fe_3O_4)作为一种重要的磁性材料,由于其优良的物理和化学性质,被广泛应用于生物、磁流体、医学等多个领域.Fe_3O_4@Au复合材料的引入不仅可以克服铁氧化物稳定性差、易团聚等缺点,并且使该材料具备了良好的生物相容性.本文制备了尺寸均一的亚铁磁性立方体形状的Fe_3O_4纳米颗粒,并以PEI-DTC作为粘合层,成功将Au粒子均匀包覆在Fe_3O_4表面.利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、紫外分光光度计(UV-vis)、SQUID-VSM磁性测量系统研究了包覆Au纳米粒子对Fe_3O_4结构和磁性的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号