首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以醇盐水解--氨气氮化法在SiC颗粒表面包覆TiN,然后采用放电等离子体烧结制备出(SiC)TiN/Cu复合材料.结果表明:醇盐水解--氨气氮化法能够制备出TiN包覆SiC复合粉末,TiN包覆层均匀连续,TiN颗粒的粒径为30~80nm.TiN包覆层能够促进复合材料的致密化并改善界面结合.(SiC)TiN/Cu复合材料的电导率介于15.5~35.7 m.Ω-1.mm-2之间,并且随着SiC体积分数的增加而降低.TiN包覆层和基体中网络结构TiN的存在能够有效提高复合材料的电导率.复合材料的电导率较接近P.G模型的预测值.  相似文献   

2.
纳米SiC颗粒增强铝基复合材料的拉伸性能   总被引:9,自引:0,他引:9  
用粉末冶金法制备了纳米SiC颗粒增强纯Al基复合材料(AlMMCs),对该材料的微观结构和拉伸性能进行了研究·结果表明,纳米SiC颗粒在含量很少时即对Al有明显的强化作用,此时,纳米颗粒在基体中的分散比较均匀;当含量较高时则纳米颗粒易于团聚,团聚会使SiC颗粒对Al的强化作用降低·纳米SiC颗粒含量发生变化,SiCp/AlMMCs的断裂机制也有所改变·  相似文献   

3.
采用分子动力学模拟方法研究了不同尺寸Au纳米颗粒在烧结过程中晶型转变及烧结颈长大机制.研究发现纳米颗粒的烧结颈生长主要分为两个阶段:初始烧结颈的快速形成阶段和烧结颈的稳定长大阶段.不同尺寸纳米颗粒烧结过程中烧结颈长大的主要机制不同:当颗粒尺寸为4 nm时,原子迁移主要受晶界(或位错)滑移、表面扩散和黏性流动控制;当尺寸在6nm左右时,原子迁移主要受晶界扩散、表面扩散和黏性流动控制;当颗粒尺寸为9 nm时,原子迁移主要受晶界扩散和表面扩散控制.烧结过程中Au颗粒的fcc结构会向无定形结构转变.此外,小尺寸的纳米颗粒在烧结过程中由于位错或晶界滑移、原子的黏性流动等因素会形成hcp结构.  相似文献   

4.
实验制备了纳米SiC颗粒强化AA6061基材料,并考察了其微观组织、硬度及磨损性能.结果表明:在20 N载荷下,强化试样的磨损率及摩擦系数均低于AA6061基体,其中0.6%SiC/AA6061复合材料的磨损率较基体降低50%.这主要是由于SiC颗粒自身良好的载荷承载能力,加之增强颗粒/基体间界面良好的结合,使SiC颗粒的添加提高了复合材料的磨损抗力.同时,促进了富铁机械转移层的形成,降低了摩擦系数和磨损率.AA6061基体和强化材料在20 N载荷下的磨损机制均为磨粒磨损.  相似文献   

5.
W/SiC纳米多层膜的调制结构及调制界面   总被引:5,自引:0,他引:5  
采用XRD和HREM技术研究了多靶磁控溅射法制备的W/SiC纳米多层膜的微结构,结果表明,在多层膜中,SiC调制层为非晶态;W调制层在大调制周期时为纳米晶,随调制周期减小逐渐转变为非晶态,W/SiC纳米多层膜的调制结构界面平直,清晰,周期性好,而在原子尺度上,界面存在一个成分混合和结构调整的过渡区。  相似文献   

6.
本文制备纳米SiC基体改性的SiC-C/C复合材料,利用X射线衍射技术、高分辨率透射电镜等研究SiC对碳材料的石墨化度的影响.纳米SiC能够显著促进碳基体材料的石墨化度,同时通过高分辨率透射电镜在纳米SiC颗粒周围观测到明显的石墨化结构,并且距离SiC越近,碳基体的石墨化程度越高.通过静态氧化实验研究SiC-C/C复合材料的抗氧化性能.结果表明,随着SiC加入量的增加复合材料的抗氧化性显著提高,纳米SiC在高温下生成较为均匀的SiO2保护层,覆盖在碳材料的表面,阻碍氧气与碳材料的接触,并且SiC含量越高,形成的保护层越厚,抗氧化能力越强.  相似文献   

7.
含有Nb、Zr、W等金属包覆层的包覆型燃料颗粒是一种新型的燃料元件形式,在核工业中有重要应用。该文利用流化床-化学气相沉积(FB-CVD)法,制备得到了含有金属包覆层的新型包覆颗粒,研究了热态输运与冷态输运2种方式对金属卤化物前驱体的载带,最终成功制备得到了纯相金属Nb与金属Zr包覆层。实验结果表明,金属包覆层可有效提升包覆颗粒整体的力学性能。该文还研究了沉积温度、前驱体输运、包覆层氧化等不同因素对沉积速率的影响。结果表明:CVD制备的金属包覆层可有效提升包覆颗粒整体的压碎强度,但抗氧化性较差,不适用于直接在氧化环境下制备与使用,可作为包覆颗粒的中间涂层。  相似文献   

8.
原位合成MoSi2/SiC复合材料的组织缺陷   总被引:6,自引:0,他引:6  
TEM和HREM研究表明,原位合成MoSi2基复合材料的组织中,基体MoSi2中存在较多的位错,而且尤以MoSi2与SiC的界面处位错最为集中,SiC颗粒的内部缺陷的主要形式为孪晶和层错,纳米力学探讨分析表明,MoSi/SiC界面附近存在明显的硬度梯度,在材料制备冷却过程中,因MoSi2基体与SiC颗粒之间的热膨胀系数(CTE)的差别而导致的其中的残余热应力是造成上述组织特征的原因。  相似文献   

9.
采用加压烧姑工艺制备了双层烧结铁基材料,研究了合金元素对高合金层烧结致密化的影响及其在界面区的分布规律,分析了该材料的显微组织和力学性能。研究结果表明:提高C和Mo的含量有利于高合金层的致密化,而提高V含量阻碍其致密化。双层烧结铁基材料综合了高合金层和基体层的优点,抗弯强度达1980MPa,冲击韧性达18J/cm^2,洛氏硬度为50。高合金层呈脆性解理断裂,基体层呈韧性断裂;C和Mo和V在界面区的扩散受到抑制,其中Mo和V集中分布在碳化物中;Cr在界面区有一定程度的扩散,Cr在高合金层中的分布相对均匀。  相似文献   

10.
以SiC颗粒为增强相,镁铝合金为基体,采用熔剂保护法制备了SiC颗粒增强镁铝基复合材料。利用扫描电镜和X射线衍射分析研究了SiC颗粒对材料微观形貌和成分的影响,并测定了材料密度和硬度随SiC颗粒含量的变化趋势。结果表明,加入SiC颗粒后的材料基体组织显著细化,界面化学反应有效地改善了SiC颗粒与基体的结合状态。同时SiC颗粒的加入有效提高了复合材料的密度和硬度,对基体具有良好的强化作用。  相似文献   

11.
为对SiC/PTFE纳米复合材料微观结构进行定量分析,运用自主开发的、基于图像处理技术的纳米复合材料微观结构分析系统,用颗粒分散度计算方法,对SiC/PTFE纳米复合材料微观结构进行了计算和分析.结果表明:颗粒分散度能较好地定量表征纳米粒子在PTFE基体中分散的均匀性;随着SiC纳米粒子含量增加,颗粒分散度先增大后减小;SiC纳米粒子含量为7%时,颗粒分散度较高,复合材料中纳米粒子分散较均匀;偶联剂处理可以提高SiC纳米粒子在PTFE基体中颗粒分散度.  相似文献   

12.
采用粉末烧结方法,利用光学显微镜、扫描电子显微镜、X射线衍射和能谱技术,研究了Ni-Zn体系固相烧结时粉末界面处形成的扩散溶解层的微观形貌和相结构,并利用TFDC电子理论讨论了扩散溶解层的形成机理。研究表明,Ni粉和Zn粉在200℃,15h的烧结过程中,Zn原子不断扩散进入到Ni晶体中,在Ni粉颗粒基体上形成了由NiZn和Ni3Zn22金属间化合物构成的“带状”扩散溶解层。  相似文献   

13.
采用粉末烧结方法,利用光学显微镜、扫描电子显微镜、X射线衍射和能谱技术,研究了Ni-Zn体系固相烧结时粉末界面处形成的扩散溶解层的微观形貌和相结构,并利用TFDC电子理论讨论了扩散溶解层的形成机理.研究表明,Ni粉和Zn粉在200℃,15 h的烧结过程中,Zn原子不断扩散进入到Ni晶体中,在Ni粉颗粒基体上形成了由NiZn和Ni3Zn22金属间化合物构成的"带状"扩散溶解层.  相似文献   

14.
SiC纳米材料制备及应用   总被引:3,自引:0,他引:3  
综述了近年来在高新技术领域发展起来的SiC纳米粉体、SiC纳米晶须、SiC同轴纳米电缆的制备方法及其应用,并对一些新型的制备方法进行重点介绍。指出,目前SiC纳米材料制备方法虽然多样,但都规模小,成本高,还难以实现大规模生产;SiC纳米材料性能优于传统的SiC材料,能够达到高新技术领域的严格要求,具有更为广泛的用途。  相似文献   

15.
TiN/SiC纳米多层膜中的晶体互促生长   总被引:3,自引:0,他引:3  
研究了TiN/SiC纳米多层膜中的晶体互促生长效应,采用磁控溅射法制备了一系列不同厚度SiC和TiN的TiN/SiC纳米多层膜以及TiN、SiC单层膜.利用透射电子显微镜、X射线衍射仪、扫描电子显微镜和X射线能量色散谱仪分析了多层膜的微结构.结果表明,尽管TiN和SiC的单层膜分别以纳米晶态和非晶态存在,但由TiN和SiC通过交替沉积形成的纳米多层膜却能够生长成为晶体完整性良好的柱状晶并呈现强烈的择优取向,显示了一种异质材料晶体生长的相互促进作用.纳米多层膜中的晶体互促生长效应与新沉积层原子在先沉积层表面上的移动性有重要关系。  相似文献   

16.
采用搅拌摩擦加工方法制备铝基SiC复合材料,研究SiC颗粒在复合材料中的分布均匀性问题,并对复合材料的力学性能及断口形貌进行分析.结果表明:1、2、3道次加工后SiC颗粒在复合材料中出现漩涡状和带状团聚现象;经4道次搅拌摩擦加工后复合层中SiC颗粒均匀弥散分布在基体金属中,复合层组织发生明显细化;添加SiC颗粒4道次加工后复合材料显微硬度提高,抗拉强度降低.搅拌摩擦区的显微硬度平均值为68HV,为基体金属显微硬度(45HV)的1.5倍;抗拉强度降低为176MPa,为基体金属的81%;复合材料拉伸试样总体表现为韧性断裂,断裂机制包含韧性断裂以及SiC颗粒与基体结合界面的撕裂.  相似文献   

17.
亚微米Al2O3,3Y—TZP和纳米SiC水悬浮液稳定性的研究   总被引:3,自引:0,他引:3  
纳米第二相颗粒弥散在陶瓷基体中构成的复合材料具有优异的力学性能。制备这类复合材料的关键在于纳米级陶瓷粉体的充分分散和复合粉体的均匀混合工艺。本文采用“电空间稳定机制”,以聚电解质PMAA-NH4为分散剂,研究了Al2O3,3Y-TZP和SiC单相系统和Al2O3,-SiC和3Y-TZP-SiC纳米复合系统的最佳分散条件。  相似文献   

18.
利用常规静态单向拉伸技术,研究了SiC颗粒尺寸对用粉末冶金工艺制得的SiC颗粒增强2124Al合金(SiCp/2124Al)变形行为和力学性能的影响.在体积比为20%的条件下,SiC颗粒尺寸在0.2~48μm的范围内变化,无论室温还是300℃,材料的变形行为和拉伸力学性能明显取决于SiC颗粒尺寸.研究表明,材料中的空隙密度、SiC颗粒的间距、分布状态以及SiC颗粒的断裂、SiC颗粒/Al界面的脱粘和基体材料的开裂等几种因素共同影响着复合材料的变形行为和力学性能.  相似文献   

19.
基于X射线CT原位试验的平纹SiC/SiC复合材料拉伸损伤演化   总被引:1,自引:0,他引:1  
采用化学气相渗透工艺制备平纹SiC/SiC复合材料,利用X射线CT无损检测技术研究纺织陶瓷基复合材料拉伸损伤演化与失效机理.制备了第3代SiC纤维增韧平纹叠层SiC/SiC狗骨状试件.研制了CT原位拉伸测试仪,完成了纳米X射线CT原位拉伸试验,对CT扫描三维重建图像和扫描电镜照片进行了分析.结果表明:纳米X射线CT原位试验能够揭示材料拉伸损伤演化过程.平纹SiC/SiC复合材料单轴拉伸应力-应变曲线呈现明显的非线性特征,损伤萌生于非线性变化阶段.首先,出现基体横向开裂,并随着拉力的增加逐渐扩展.其次,出现层间基体开裂和纤维束基体纵向开裂,并逐渐扩展至纤维束宽度.最后,拉伸方向纤维断裂,材料失效,大多基体横向裂纹闭合,但纵向纤维束与束间基体分离严重,断口参差不齐,有明显的纤维拔出现象.  相似文献   

20.
采用多层喷射沉积技术制备了6066Al/SiC_p板材和锭材,研究了轧制、挤压工艺和热处理制度对该材料组织和力学性能的影响。研究结果表明,SiC颗粒在基体中分布均匀,结合良好,界面无明显反应区;轧制和挤压是对喷射沉积材料有效的致密化工艺并能改善SiC颗粒在基体中的存在状态;材料在T6态获得拉伸强度为640MPa,屈服强度为580MPa,弹性模量为133GPs,延伸率为9.4%的优良力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号